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Abstract 
 
Land use and land cover (LULC) mapping provides crucial information for sustainable development, urban planning, disaster risk 
assessment, and mitigation. Various approaches are used for LULC classification in remote sensing, but machine learning has 
recently gained significant popularity. This paper investigates the application of machine learning algorithms for LULC mapping in 
Al Ain city, UAE. The study utilizes the Gradient Tree Boosting (GTB), Random Forest (RF), Support Vector Machine (SVM), and 
Classification and Regression Tree (CART) classifiers within the Google Earth Engine (GEE) platform. The objective is to evaluate 
and compare the performance of these algorithms using Sentinel-2 imagery from 2024 while also assessing GEE’s suitability for 
handling both the dataset and algorithms. Various parameters influence algorithm performance. Algorithm performance is evaluated 
based on overall accuracy and kappa coefficient metrics along with user and producer accuracy. The results indicate that RF and 
GTB achieved the highest overall accuracy, with GTB's Kappa coefficient slightly lower than RF’s, followed by SVM. CART 
demonstrated a comparatively lower overall accuracy and Kappa coefficient than the other classifiers. These findings provide 
insights into the suitability of these algorithms and highlight GEE’s limitations -particularly its memory constraints- for LULC 
mapping in arid environments like Al Ain. This research contributes to the development of LULC mapping methodologies and their 
applicability in a sustainable development context. 
 
 

1. Introduction 

Land use and land cover (LULC) maps are designed and 
produced to display the features on the surface of the earth and 
provide information about visible features such as water bodies, 
vegetation cover, and built-up areas. This information is vital 
for urban planning and sustainable development management 
(Aryal et al., 2023). LULC classification is a crucial process 
that assigns specific land cover categories to every pixel in an 
image (Hsiao & Cheng, 2016). This fundamental information 
supports geospatial analysis and environmental management, 
enabling a comprehensive understanding of the composition 
and distribution of land cover types within a given area. By 
tracking land cover changes and assessing their environmental 
and socio-economic impacts, LULC maps empower researchers 
and decision-makers to make informed choices for sustainable 
land management and resource allocation. Leveraging this 
knowledge, stakeholders can effectively analyze and manage 
land resources, ensuring sustainable development and 
optimizing land use practices.  
 
Remote sensing is an effective approach in LULC mapping, 
assessing their patterns and trends. Various classification 
techniques are available, including pixel-based (Enderle & 
Weih, 2005), object-based (Qinghua et al., 2007), and machine 
learning methods (Liao et al., 2019). However, classifying 
complex urban landscapes can be a challenge due to the 
diversity and heterogeneity of land surface features. In such 
cases, machine learning algorithms can provide valuable 
solutions (Dahy et al., 2022). 
 
In the current era of big datasets, continued development, and 
environmental change, an effective approach to enhance and 
automate the process of LULC classification is needed, and it 

could be achieved through a specialized toolset based on robust 
geospatial cyberinfrastructure. Such an infrastructure offers 
access to powerful computational resources (Feizizadeh et al., 
2023). Integrating these resources with geospatial 
cyberinfrastructure can significantly enhance geospatial 
analysis, such as LULC mapping and accuracy assessment. It 
enables the use of more sophisticated machine learning 
techniques, allowing for better discrimination and interpretation 
of different LULC categories. Additionally, the availability of 
substantial computational resources helps process vast 
geospatial datasets efficiently, making it a valuable tool for 
researchers and practitioners in the field of environmental 
science and geospatial analysis. 
 
Google Earth Engine (GEE) is a cloud-based platform known 
for granting users access to an extensive repository of geospatial 
data and an array of powerful tools, which makes it particularly 
well-suited for large-scale monitoring and modelling of the 
Earth's features (Yang et al., 2022). GEE offers a free, open-
source environment and access to an extensive library of 
reusable code, making it a robust platform for remote sensing 
applications that rely on satellite imagery (Yu, 2022).  These 
capabilities of GEE lead to a wide array of applications, 
including crop mapping, forest mapping, monitoring urban heat 
islands, and detection, LULC changes, among others. 
 
The United Arab Emirates (UAE) is one of the fastest-
developing countries, where the economy primarily depends on 
oil reserves. However, the country's development is not limited 
to the oil industry alone. Cities such as Al Ain, which was 
selected for this study, demonstrate planned and comprehensive 
development efforts (Hamouche, 1999). Al Ain is the second 
largest city in the Emirate of Abu Dhabi and has been 
experiencing rapid growth and development. Given the ongoing 
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changes, it is crucial to map the distribution of LULC classes. 
While previous studies have examined land cover and its 
transformations in Al Ain, this research aims to identify the 
most suitable machine learning algorithm that delivers the 
highest performance using Sentinel-2 imagery in the study area. 
Additionally, it will assess the suitability of the GEE platform 
for LULC mapping with the selected algorithms, considering 
factors such as computational efficiency, memory limitations, 
and overall performance.  
 
 

2. Materials and Methods 

2.1 Study Area 

The study focuses on Al Ain (Fig. 1), which is located in the 
Emirate of Abu Dhabi, UAE. Al Ain's diverse landscape, 
characterized by urban, agricultural, and natural land cover 
(Sharaf, 2019), provides an ideal setting for evaluating machine 
learning algorithms for LULC mapping. 
 

 
 

Figure 1. Study Area Map 
 

 
2.2 Methodology 

The Sentinel-2 satellite imagery from the year 2024 (with less 
than 1% cloud cover) is utilized as the primary data source for 
LULC classification. This multispectral data, with its relatively 
moderate spatial resolution and spectral bands, enables detailed 
analysis of the study area (Table.1). 
 

Table 1: Date of acquisition and specifications of Sentinel-2 
imagery used in this Study. 

 
Date Spectral Bands  

 
 
 

25August 
2024 

Band 2:  Blue (458-523 nm) 
Band 3: Green (543-578 nm) 
Band 4: Red (650-680 nm) 
Band 5: Red-Edge 1 (698-713 nm) 
Band 6: Red-Edge 2 (733-748 nm)  
Band 7: Red-Edge 3 (773-793 nm) 
Band 8: Near-Infra-Red (785-899 nm) 
Band 11: Short-Wave Infra-Red 1 (1565-1655 nm)  
Band 12: Short-Wave Infra-Red (2100-2280 nm) 

 
 A shapefile of Al Ain city is used to clip the study area from 
the acquired satellite image. Following this, a literature review 
and careful visual interpretation of the study area found that the 
surface features can be grouped into four main LULC classes, 
i.e. desert, built areas, vegetation, and water. Hence, for the 
classification process, the sample data was acquired through 

GEE by creating representative polygons from each class (Table 
2). This data contributed to training the classifiers and to the 
accuracy assessment of the classification results.  
 

Table 2: Distribution of polygons and pixels across different 
land cover classes in training and validation data. 

 

Training Data 

Class Number of Polygons Number of Pixels 
Water 21 2,092 

Vegetation 37 24,825 
Built Areas 28 27,171 

Desert 32 24,242 

Validation Data 

Class Number of Polygons Number of Pixels 
Water 7 200 

Vegetation 18 5,011 
Built Areas 10 6,681 

Desert 7 8,928 
 
 
2.3 Machine Learning Classifiers 

GEE provides built-in classifiers for LULC mapping. From this 
inventory, four supervised classifiers have been selected: 
Random Forest (RF), Classification and Regression Tree 
(CART), Support Vector Machine (SVM), and Gradient Tree 
Boosting (GTB). These classifiers have been recognized in the 
literature for their reliability and efficiency in handling the 
complexities associated with remote sensing data and LULC 
tasks  (Ouma et al., 2022).  
 

 
Figure 2. Flow chart of the methodology for LULC mapping of 

Al Ain city in the GEE platform. 
 

RF and GTB are ensemble methods that have demonstrated 
high accuracy and robustness in managing complex data 
distributions, making them particularly suitable for 
heterogeneous landscapes (Orieschnig et al., 2021). CART 
offers simplicity and interpretability, which facilitates 
understanding the classification decision process. SVM is 
effective in high-dimensional data scenarios and with small 
sample sizes, which is advantageous for accurately capturing 
detailed class boundaries (Shetty, 2019). The parameters of 
each classifier were customized to align with the specific 
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characteristics of the study area, further improving classification 
accuracy. Fig. 2 illustrates the flow of the adopted study 
methodology.  
 
2.3.1 Random Forest (RF): A non-parametric ensemble 
machine-learning algorithm based on decision trees (Breiman, 
2001). It is a modified version of CART and intends to resolve 
the overfitting issue observed with CART (Belgiu & Drăguţ, 
2016). The number of trees (n-tree) and the number of variables 
used in each split (m-try) are essential parameters (Breiman, 
2001). The study explored the impact of the number of trees and 
variables on the accuracy of the RF algorithm. It was found that 
using approximately 150 trees provided the most reliable 
results, with a slight improvement in accuracy using 500 trees 
but at a significantly higher processing time. The final 
parameters used in the study were 150 trees and 3 variables. 
 
2.3.2 Support Vector Machine (SVM): SVM is designed 
for classification and regression tasks (Gunn, 1997), and works 
by finding an optimal hyperplane that separates the decision 
boundary between different classes. The parameters used in this 
study are as follows: an Radial Basis Function (RBF) kernel 
type to capture non-linear relationships in the data; a cost 
parameter (C) set to 1.0, achieving a balanced trade-off between 
a smooth decision boundary and accurate classification of 
training points; and a gamma parameter of 0.1 specified for the 
RBF kernel, influencing the width of the kernel and balancing 
between capturing fine details and avoiding overfitting. 
 
2.3.3  Classification and Regression Tree: A decision tree-
based algorithm that splits data based on the most significant 
attribute was used. CART is comparatively a simple model 
hence computationally efficient. However, it can sometimes 
lead to overfitting. While in some cases CART can lead to 
complex trees. To overcome these issues following parameters 
were used in this study, each tree had a maximum of 36 leaf 
nodes and a minimum leaf population of 16 data points prevent 
excessive complexity and ensuring that the tree model remains 
more generalizable. 
 
2.3.4 Gradient Tree Boosting (GTB): GTB is an ensemble 
algorithm combining multiple weak decision tree based 
classifiers to create the model(Ouma et al., 2022).  GTB 
iteratively adds new trees to correct the errors made by previous 
trees, resulting in improved predictive accuracy. For this study 
number of trees were kept 100 and learning rate of 0.005.  
 
2.3.5 Performance Evaluation: The accuracy and efficiency 
of the machine learning algorithms are evaluated based on 
measures of overall accuracy, kappa coefficient, and confusion 
matrices. The impact of Sentinel-2 imagery from 2024 on 
classification results is analyzed. Performance parameters, such 
as the number of trees in RF, kernel type, and cost parameter in 
SVM, and maximum leaf nodes and minimum leaf population 
in CART, are systematically varied to understand their influence 
on classification accuracy and processing time. 
 
2.4 Google Earth Engine Implementation 

GEE was chosen due to its ability to handle extensive datasets 
and provide powerful processing tools without requiring 
significant local computational resources. The study uses the 
GEE platform for the efficient processing of satellite imagery 
and the implementation of machine learning algorithms. The 
JavaScript client libraries were utilized to access and implement 
the classifiers within the GEE code editor. GEE allows users to 

import their own datasets too, in this study, the Al Ain city 
Shapefile was imported to define the Area of Interest (AOI), 
thus avoiding the processing of entire tiles, which would 
demand more computational power and time. The classifiers 
were applied to Sentinel-2 imagery, and results were validated 
accuracy assessment using validation data.  
 

3. Results and Discussion 

The LULC mapping of an urban area in the mainly arid and 
desert country of the UAE highlights how the accuracy of 
different land cover classes varies with various machine 
learning algorithms. It also demonstrates the responsiveness of 
GEE to these classifiers and the impact of parameter 
adjustments on classification performance. 
 
3.1 LULC Classification Maps 

The study's primary outcome is the generation of LULC 
classification maps for Al Ain using the GEE platform.  
 

 

 

(a) 

(b) 
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Figure 3: Sentinel 2 classified images of year 2024, (a): RF, (b): 

CART, (c): SVM and (d): GTB. 
 

These maps, derived from Sentinel-2 imagery, offer a visual 
representation of the spatial distribution of various land use 
categories, such as built areas, vegetation, water, and desert. 
Fig. 3 gives the visual representation of classified maps with all 
four tested algorithms.  

 
The RF classifier estimates vegetation covers 82 km², water 
covers 2 km², the desert spans 548 km², and built areas cover 
138 km². The CART classifier estimates vegetation covers 75 
km², water covers 2 km², the desert spans 527 km², and built 
areas cover 161 km². The SVM classifier estimates vegetation 
covers 73 km², water covers 3 km², the desert spans 516 km², 
and built areas cover 179 km². The GTB classifier estimates 
vegetation covers 80 km², water covers 2 km², the desert spans 
520 km², and built areas cover 168 km². 
 
The analysis indicates that the desert is the dominant land cover 
class in the study area, followed by built areas, vegetation, and 
water. The RF and GTB classifiers exhibit the most consistent 
results, particularly in estimating vegetation and water cover. In 
contrast, the SVM classifier presents a slightly different picture, 
with higher estimates for built areas and lower estimates for 
vegetation cover. The CART classifier shows the highest 
variability in its estimates.  
 
3.2 Accuracy Assessment 

This section compares the performances of the four machine 
learning algorithms used in the study over Sentinel-2 imagery in 
UAE’s arid environment. The performance metrics, including 
user's accuracy, Producer's accuracy, kappa accuracy, and 

overall accuracy, all derived from the confusion matrices of the 
classification results (Table 3). 
 
Table 3: Performance metrics of machine learning classifiers. 
 

Random Forest 
Class User's Accuracy (%) Producer's Accuracy (%) 

Vegetation 98.45 99.61 
Water 61.54 72.73 
Desert 99.45 97.43 

Built Area 91.44 91.33 
Overall accuracy  0.97 
Kappa accuracy 0.94 

Classification and Regression Tree 
Vegetation 96.5 95.2 

Water 62.5 19.2 
Desert 96.8 94.7 

Built Area 78.8 85.6 
 Overall accuracy  0.93 
Kappa accuracy 0.89 

Support Vector Machine 
Vegetation 98.06 98.05 

Water 66.67 44.83 
Desert 96.14 99.12 

Built Area 98.93 85.51 
Overall accuracy  0.96 
Kappa accuracy 0.91 

Gradient Tree Boosting 
Vegetation 98.73 98.97 

Water 62.79 54.83 
Desert 97.01 99.14 

Built Area 98.99 87.51 
Overall accuracy  0.97 
Kappa accuracy 0.93 

 
Studies have explored the potential of machine learning 
classifiers for accurate LULC classification in arid and semi-
arid regions (Bouaziz et al., 2017; Kuemmerle et al., 2013; 
Sultan et al., 2024).  While machine learning classifiers 
generally perform well in these regions, their actual 
effectiveness depends heavily on the quality and characteristics 
of the training data (Abida et al., 2022). To perform a fair 
comparison, we used the same training and validation data 
along with consistent satellite imagery to across all classifiers. 
Fig. 4 shows the charts showing producer and user accuracy for 
LULC classes across all classifiers.  
 

 
Figure 4. User and producer accuracy charts for all classifiers. 
 

(c) 

(d) 
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One of the key challenges in the arid environments is the 
spectral similarity between desert surfaces and built-up areas, 
which often leads to classification errors (Dahy et al., 2021; 
Sultan et al., 2024). High reflectance of desert surfaces and low 
soil moisture creates a complex spectral landscape that can lead 
to misclassification in arid environments(Weng et al., 2020). RF 
and GTB emerged as top performers achieving overall accuracy 
of 0.97 and Kappa coefficients of 0.94 and 0.93, respectively. 
GTB combines multiple weak decision trees, iteratively 
improving classification accuracy,(Patil & Panhalkar, 2023) 
making it particularly effective for challenging classes like 
built-up and desert surfaces.   RF, which aggregates the output 
of multiple decision trees through majority voting, 
demonstrated stable and consistent performance across various 
land cover types due to its robust generalization capability and 
tolerance for spectral variability.  
 
SVM achieved competitive results but showed some 
inconsistencies in distinguishing complex class boundaries. 
This can be attributed to its reliance on a hyperplane to separate 
classes, which may struggle when class distinctions are subtle or 
non-linear in arid regions(Awad & Khanna, 2015). For 
example, the spectral overlap between desert and built-up areas 
poses a significant challenge for SVM, as the algorithm may fail 
to capture the differences in reflectance patterns. The kernel 
function adjustments or inclusion of additional spectral bands 
could improve its performance in such environments.  
  
CART classifier resulted in lowest performance, with overall 
accuracy of 0.93 and kappa coefficient of 0.90.  It exhibited 
higher misclassification rates, particularly in vegetation and 
water. This suggests it may not generalize well in complex 
classes due to its tendency to overfit the training data, and the 
inherent complexity of these classes(Kulithalai Shiyam Sundar 
& Deka, 2022).  
 
When using fewer spectral bands (B2, B3, B4, B5, B6, B7, and 
B8A), the classifiers showed lower accuracy due to the limited 
ability of these bands to distinguish between built-up areas and 
deserts. The inclusion of B11 and B12, which represent 
shortwave infrared bands, significantly improved the overall 
accuracy by enhancing the differentiation between these classes. 
This suggests that instead of relying on multiple bands from the 
red-edge portion of the electromagnetic spectrum, which may 
provide redundant information, it may be more effective to 
reduce their number and incorporate bands from the shortwave 
infrared region for better classification results. 
 

 
 
Figure 5: Illustrating the overall accuracy and kappa coefficient 

accuracy amongst classifiers. 
 
GTB and RF emerged as the most reliable classifiers for LULC 
mapping in arid environments. GTB's strength lies in its ability 
to better distinguish built-up areas and desert surfaces, while RF 

demonstrated stable performance across different land cover 
types. SVM offered competitive results but showed some 
inconsistencies in complex class boundaries. Meanwhile, the 
CART was less effective due to higher errors. While this study 
focused on Sentinel-2 imagery, previous studies on different 
remote sensing data sets tested classifiers and found that RF and 
GTB classifier performed highest across all tested sensors i.e., 
Landsat 7, Landsat 8 and Sentinel-2  (Gupta et al., 2024; Issa & 
Sultan, 2024). These findings suggest that RF and GTB are 
robust and reliable choices for LULC classification in arid and 
semi-arid regions, regardless of the specific remote sensing data 
used. 
3.3 Google Earth Engine Performance  

The use of advanced machine learning algorithms has prevailed 
and proven effective compared to traditional classification 
algorithms (Dahy et al., 2022; Issa et al., 2021).  However, 
these algorithms often require proficiency in programming 
languages and GEE's Application Programming Interfaces 
(APIs), which may pose challenges for users with limited 
technical expertise (Elmahal & Ganwa, 2024). To address this, 
GEE provides language programming libraries, such as 
JavaScript and Python client libraries, to simplify the platform's 
use and enable the implementation of complex machine learning 
techniques (Tamiminia et al., 2020).  
 
In the current study, we used GEE’s JavaScript library, 
employing several classifiers: RF 
(ee.Classifier.smileRandomForest), CART 
(ee.Classifier.smileCart), SVM (ee.Classifier.libsvm), and GTB  
(ee.Classifier.smileGradientTreeBoost). For a comparatively 
smaller study area like Al Ain city covering an area of 770 km2, 

GEE provided an efficient platform to acquire sentinel-2 images 
of the study area and to perform LULC classification using 
various classifiers. Overall, GEE performed well for all 
classifiers. However, with the change in classification 
parameters, such as adding more spectral bands for LULC 
classification, other classifiers performed better. While SVM 
also showed an increase in accuracy, its processing time was 
excessively long. The GEE platform failed to print the accuracy 
assessment results and the classified image. Additionally, 
exporting to Google Drive took more time than other classifiers’ 
images, taking up to 10 hours for one classified image with 
SVM classifier.  
 
Similarly, with an increase in the number of trees in RF and 
GTB with an increase in the number of trees, the processing 
time increased. GTB had higher computational demands, so the 
number of trees was kept 100. For RF, although the GEE 
platform efficiently handled up to 300 trees, accuracy 
improvements beyond 150 trees were negligible, leading to the 
selection of 150 for this study. This highlights the importance of 
selecting an optimal number of trees since beyond a certain 
point, processing time increases significantly with little to no 
accuracy improvement. Memory constraints and time-outs in 
GEE further hindered complex analyses and handling high-
dimensional datasets. Therefore, careful parameter selection is 
essential for efficient and effective LULC classification using 
GEE.  
 
Although GEE provides limited memory, careful consideration 
of parameters such as the bands to be considered is necessary. It 
is important not to lose bands that carry vital information for 
capturing spectral variabilities, such as bands 5 to 8A, which all 
cover near-infrared (Phiri et al., 2020). Therefore, band 
reduction should be done in these areas rather than 
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compromising bands 11 and 12, which assist in separability in 
urban and built areas. GEE provides data visualization 
capabilities, but our study encountered limitations. The 
visualization failed due to computational limitations when using 
a larger number of bands for classification with the SVM 
classifier, while other classifiers gave smooth visualization. To 
address this issue, external tools could be added, or images 
could be exported to Google Drive and visualized using 
desktop-based software like ArcGIS Pro, as in our case.  
 
The spectral heterogeneity in complex environments like arid 
regions presents challenges that lead to confusion between 
LULC classes, particularly between built areas and desert 
regions. Addressing this issue requires the inclusion of 
additional spectral bands, indices, and topographic information 
to enhance classification accuracy (Adepoju & Adelabu, 2020). 
However, due to GEE’s computational limitations, 
incorporating more classification variables may result in 
excessively long processing times or computational time-outs, 
leading to execution failure. For example, in our study, 
increasing spectral inputs significantly impacted processing 
time while using the SVM classifier, which failed to generate 
results and was impacted by computational time out. This issue 
can be addressed by dividing the area into smaller tiles or by 
reducing the complexity of commands and breaking them into 
smaller parallel tasks (Shafizadeh-Moghadam et al., 2021). 
Simplifying commands or structuring workflows into smaller 
steps can further alleviate computational and memory 
constraints. Alternatively, preprocessing some analyses outside 
the GEE platform before importing data for further processing 
can help optimize performance.  
 

4. Conclusion 

This study evaluated the performance of different machine 
learning algorithms for LULC classification in Al Ain, UAE, 
using Sentinel-2 imagery and the GEE platform. The findings 
indicate that RF and GTB classifiers achieved the highest 
accuracies, with CART demonstrating the lowest accuracy. 
GTB performed marginally better in vegetation classification, 
while SVM showed slightly higher misclassification rates, 
particularly in-built Areas and desert classes, which present 
known challenges in arid environments. The lower accuracy of 
the CART classifier suggests its limited generalizability in 
complex urban and natural landscapes, making CART and SVM 
the least suitable for LULC mapping in arid regions like Al Ain 
city.  
 
The GEE platform proved to be an effective tool for acquiring 
and processing rapid data from satellite imagery. It enabled the 
use of classification algorithms from GEE’s JavaScript library, 
allowing for parameter adjustments to optimize accuracy. While 
processing was generally smooth, the study faced computational 
limitations, including prolonged processing times, memory 
constraints, and time-outs when dealing with high-dimensional 
datasets and complex analyses. However, these challenges can 
be sorted either by reducing data dimensionality or simplifying 
operations.  
 
These findings suggest that high-accuracy classifiers like RF 
and GTB can be implemented in other parts of the country and 
for longer-term studies. Insights from these LULC studies can 
support planned development in growing urban areas like Al 
Ain city. Future research should address GEE's limitations by 
integrating alternative computational frameworks or developing 

custom algorithm implementations to enhance scalability and 
processing efficiency. 
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