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Abstract

Nitrogen dioxide (NO2) is a critical pollutant with widespread effects on both air quality and environmental health, recognized
as a key concern within the United Nations’ Sustainable Development Goals (SDGs). This study investigates NO2 levels in Italy,
analyzing spatial and seasonal variations to better understand pollutant distribution. Using open-source data, we employed machine
learning models to estimate NO2 concentrations, achieving strong predictive accuracy based on the mean absolute percentage error
and the root mean-squared error. The results reveal that model performance improves significantly when data is segmented based
on seasonal and urban development factors. Specifically, predictions for urban, rural, and mixed cities demonstrated that urban
areas exhibited higher NO2 concentrations, while rural regions showed comparatively lower levels. The analysis underscores the
importance of tailoring models to regional and temporal contexts, affirming that open-source data, combined with machine learning
techniques, can effectively estimate NO2 pollution levels across diverse environments.

1. Introduction

Nitrogen dioxide (NO2) is identified as one of the most lethal
pollutants in the atmosphere that has adverse effects on air qual-
ity and the ecological environment. The major local sources of
nitrogen oxides are emissions from vehicles, fossil fuel power
plants, industries and factories, household cooking activities,
and natural soil processes (Wei et al., 2022). In addition, trans-
fer of pollutants from other regions contributes to increased
ground-level NO2 contributions (Chi et al., 2022; Fan et al.,
2021). One can conclude that human activities are probably the
major contributors to increased levels of NO2 (Cedeno Jimenez
et al., 2023). This is further supported by the works of Piccoli
and colleagues, which discloses how the influence of mass lock-
downs during the COVID-19 Pandemic on significant decrease
in NO2 concentration across various countries, including Italy
(Piccoli et al., 2020). Being a major component of chemical
processes within the stratosphere and troposphere, NO2 is af-
fected by natural and man-induced emissions, thereby display-
ing clear spatial and temporal variations (Chi et al., 2022; Fan et
al., 2021; Van Geffen et al., 2015). In particular, high concen-
trations of NO2 gather around emission sources allowing large
deposits of NO2 at the bottom of the troposphere (Chi et al.,
2022), posing instant adverse threats on the urban population.
Recent studies highlight the significant health risks, including
but not limited to, premature mortality (Ghahremanloo et al.,
2021) and increased risk of various cardiovascular and respir-
atory diseases (Weinmayr et al., 2010; Zhu et al., 2019) such
as the Chronic Obstructive Pulmonary Disease (COPD), which
is the fourth leading cause of death globally and can be associ-
ated with NO2 (Zhang et al., 2018). This advocates for rigorous
monitoring of NO2 to negate the adverse effects of NO2 on the
environment and population’s health.
There are several initiatives that have been employed to address
the hazardous challenge posed by increased NO2 levels. The
United Nations (UN) has introduced Sustainable Development
Goals (SDGs) that act as a guide for government entities, or-

ganizations, and individuals, offering a united worldwide plan
to mitigate numerous issues ranging from poverty, health, cli-
mate change, and inequality (Carlsen and Bruggemann, 2022).
In particular, air quality is specifically mentioned in two of
the 17 SDGs (Carlsen and Bruggemann, 2022). Moreover, the
World Health Organization (WHO) has developed Air Quality
Guidelines (AQGs) to mitigate the negative effects of NO2 on
human health (Song et al., 2023). Nevertheless, it has been re-
ported that 90% of the world’s population resides in areas that
are not in compliance with UN established air quality meas-
ures (Trushna and Tiwari, 2022), and around 549,715 deaths
worldwide have been caused by high NO2 concentrations which
could be prevented if stringent measures had been taken to com-
ply with the AQGs (Song et al., 2023). Recently, Italy has intro-
duced its 2030 sustainability vision prioritizing the alteration of
the fundamental biogeochemical cycles including carbon with
the aim to decarbonize the country as much as possible.

Current NO2 monitoring methods rely heavily on ground-based
stations, which provide high-accuracy measurements but suf-
fer from sparse spatial coverage and high operational costs.
Although satellite remote sensing data offer greater coverage,
they are limited by temporal resolution, cloud interference, and
lower accuracy near the surface. These limitations highlight the
need for a machine learning approach that can integrate mul-
tiple data sources to improve spatial and temporal resolution
while maintaining accuracy.

In the light of the aforementioned climate risks related to NO2

levels in the atmosphere, we present an analytical study on the
measured NO2 levels in the region of Italy with respect to spa-
tial and temporal variations. Our contributions are summarized
as follows:

1. We study several machine learning based approaches to
estimate NO2 levels based on open data sources.

2. We further analyze the variations of NO2 with respect to
temporal and spatial variations within the region.
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2. Related Work

Due to the alarming risks associated with increased NO2 levels,
governments, like the United States Environmental Protection
Agency (US EPA) and the European Environment Agency (EEA),
have implemented several measures to monitor and control NO2

concentrations effectively (Cedeno Jimenez and Brovelli, 2023).
In general, standard guidelines are proposed by governments to
ensure uniformity and accuracy in measurements of NO2. In
their article, Jiminez and colleagues explained how the afore-
mentioned entities use direct analyzers which sample air from
decided locations to measure concentrations of nitrogen monox-
ide and nitrogen dioxide (Cedeno Jimenez and Brovelli, 2023).
Due to the large capital investment needed to maintain ground
monitoring stations (Pinder et al., 2019), less economically de-
veloped countries (LEDCs) are hindered from leveraging these
technologies (Cedeno Jimenez and Brovelli, 2023). Moreover,
because of the short atmospheric lifespan of NO2, accurately
measuring surface NO2 concentrations across a wide area is dif-
ficult with limited data from ground-based monitoring stations.
Despite the high precision and accuracy of ground-stations meas-
uring NO2, these cannot be placed in urban environments where
the spatial distribution of pollutants changes most drastically,
calling for the development of accurate strategies to estimate
surface NO2 levels at high spatiotemporal resolutions (Ghahre-
manloo et al., 2021). Therefore, in lieu of data from ground
stations, multiple studies utilize data from satellite instruments,
such as the global ozone monitoring experiment (GOME) in-
strument, Ozone Measurement Instrument (OMI), and the Tro-
pospheric Measurement Instrument for the Sentinel-5P satel-
lite, for estimations of surface NO2 levels (Cedeno Jimenez
et al., 2023; Boersma et al., 2011; Wang and Wang, 2020).
For instance, the Sentinel-5P satellite from ESA can measure
NO2 concentrations at a tropospheric level (Cedeno Jimenez
and Brovelli, 2023). Clearly, such instruments fail to accurately
determine the NO2 concentration at ground level, which is the
ultimate point of interest (Oxoli et al., 2020). Even though there
have been attempts to convert satellite tropospheric NO2 into
ground-level NO2 concentrations using statistical models and
chemical transport, the output compromises on the accuracy
of NO2 concentrations (Wei et al., 2022; Lamsal et al., 2008).
Moreover, leveraging machine learning algorithms (He et al.,
2022; Jiang and Christakos, 2018; Huang et al., 2022; Long et
al., 2022), in lieu of regression models, has enabled more reli-
able estimations of pollutant concentrations (Ghahremanloo et
al., 2021). For instance, the work of Zheng and colleagues em-
ployed Deep Convolutional Neural Networks (CNN) along with
Random Forests for estimating PM2.5 levels in China (Zheng
et al., 2020). Despite the exceptional capabilities of machine
learning algorithms, a significant limitation is the challenge of
interpreting the output (Garcı́a and Aznarte, 2020), which has
limited their applicability.

3. Methodology

3.1 Dataset

The dataset contains information from the Lombardy adminis-
trative region in Italy and parts of Veneto (See Fig. 1). Data
is collected only from the plains regions (Pianura Padana), and
not the mountainous Alpine regions north of the area of study.

The dataset contains both ground-truth and remote sensing data
to predict NO2 (measured in µg/m3) levels in Lombardy, Italy.

The data has been collected through air quality monitoring sta-
tions scattered around the region. In total, there are 79 unique
monitoring stations which have each collected data from the be-
ginning of 2019 until the end of 2021. The locations of these
monitoring stations can be seen in Fig. 1. On the other hand, the
remote sensing data has been collected from open source satel-
lite sources such as Sentinel-2 and Landsat. A full description
of the dataset can be found in Table 1.

3.1.1 Pre-processing Some basic pre-processing is applied
to the dataset in preparation of training for models. In partic-
ular, the dataset is first modified such that all rows containing
null values are removed. It is then split into 90% for training
and 10% for testing, which is reflected throughout all the ex-
periments conducted within this study. For the purposes of this
particular study, the following features are dropped as they will
not be contributing to the regression analysis: ID Zindi, LAT
and LON, and the ID (regional identifier). The remaining fea-
tures are then scaled using a standard Min-Max scaler.

3.2 Regression Analysis

The analysis experiments with the use of classical machine learn-
ing models to learn trends within the data to predict the NO2

levels. The use of deep learning models like LSTM based net-
works were explored on the aggregated and un-aggregated data-
sets, achieving MAPEs of 53.3% and 43.51% respectively. Hence,
classical machine learning techniques have been applied which
produce better results as seen in Section 4. Various types of
classical machine learning models are used for comparative pur-
poses in this analysis. Linear models, such as Ridge and Lasso
regression, assume a linear relationship between features and
the target variable, offering simplicity and ease of interpreta-
tion. Non-linear and non-parametric models, like Support Vec-
tor Regressor (SVR) and K-Nearest Neighbors (KNN), cap-
ture more complex relationships but are generally more diffi-
cult to interpret. Tree-based models, including Decision Trees,
Random Forests, Gradient Boosting, XGBoost, LightGBM, and
CatBoost, use feature splits to form tree structures, effectively
handling both linear and non-linear patterns, though often at the
expense of interpretability. For fine-tuning, the Optuna frame-
work was used to determine the optimal hyperparameters (Akiba
et al., 2019). The models’ performances was evaluated us-
ing two metrics, namely the mean absolute percentage error
(MAPE) and the root-mean square error (RMSE) (Eqs. 1 and 2
respectively.).

MAPE =
1

n

n∑
i=1

|Yi − Ŷi|
Yi

(1)

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 (2)

In both equations, Yi is the actual value at index i with Ŷi rep-
resents the forecasted value at index i. The term n refers to
the total number of samples. Using these two metrics allows
us to see both the average magnitude of prediction errors and a
scale-independent measure relative to the actual values at any
point. In particular, MAPE gives us a percentage-based meas-
ure of a model’s performance whilst RMSE is in the same units
as the dependent variable, making it more interpretable. Both
are heavily used within the field.
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Figure 1. Map of the administrative region of Lombardy containing the locations of the monitoring stations.

The best models are determined by using 10-fold cross valida-
tion and then conducting the Kruskal-Wallis Test to determine if
the performance of the models are statistically different. After
determining the best models using these metrics, the top four
best performing models are fine-tuned and put into an ensemble
model. This ensemble model is evaluated based on MAPE and
prediction accuracy.

Table 1. Summary of Dataset Features

Description

Features

ID Zindi: Spatial Identifier
Date: Date of Data Collection
ID: Region Identifier
LAT: Latitude
LON: Longitude
Precipitat: Precipitation from CHIRPS
LST: Land Surface Temperature from NOAA
AAI: Absorbing Aerosol Index
CloudFract: Cloud Fraction
NO2 strat: Stratospheric NO2 Concentration
NO2 total: Total NO2 Concentration
NO2 trop: Tropospheric NO2 Concentration
Tropopause: Tropopause Height

Target GT NO2: Ground-Truth NO2 Levels
Total
Size

86,584

3.2.1 Aggregating Data Further evaluation is done on the
model by aggregating the results based on recorded dates. In
other words, all the results for a given day are summed together

and the values (after standardizing) are used to train a similar
ensemble model. The results of this will be reported to determ-
ine whether aggregating data through time is able to improve
model performance.

3.3 Geo-spatial Analysis

To further understand the sources of variability in the NO2 levels
with respect to temporal and spatial aspects, we divide the data
into sub-categories, particularly pertaining to the seasonality
and the degree of urban development. We considered two peri-
ods of the year (Spring / summer, Fall / winter), along with two
levels of urban development. This is done by cross-referencing
the longitude and latitude pairs of each monitoring station with
corresponding historical NDVI (normalized difference vegeta-
tion index) values: Points with high average NDVI (beyond the
range of 0.1-0.2 are categorized as rural, whilst points with av-
erage NDVI values lower than that are categorized as urbanized
(de la Iglesia Martinez and Labib, 2023). As expected, these
points line up with monitoring stations in metropolitan cities
such as Milan or Brescia, where we are confident NDVI is lower
due to the urbanized environment.

The data is aggregated within each of the four scenarios such
that the training data contains the first 90% of data when or-
ganized sequentially based on dates, and the testing data con-
tains the remaining 10%. Table 2 shows the sizes of these sub-
datasets after the null-valued rows have been dropped.

The resulting models from each of the four scenarios are com-
paratively analyzed to determine whether seasonality and urban
development play a factor in the prediction of NO2 levels. This
comparison is done mainly on the basis of feature correlation
and importance in prediction.
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Table 2. Sizes of Sub-Datasets for Training and Testing

Sub-Dataset Training Size Testing Size
Urban - Spring, Summer 428 48

Urban - Fall, Winter 360 41
Rural - Spring, Summer 428 50

Rural - Fall, Spring 378 42

4. Results and Discussion

We begin with a preliminary analysis of the performance of re-
gression models on the full dataset. In particular, we looked at
the evaluation metrics for each of the 10 regressors based on
the default values. Table 3 shows the corresponding RMSE and
MAPE values for each of the regressors. The highlighted values
within the Table represent the four lowest MAPE values, which
will then be used for further evaluation.

Table 3. Regression Model Performance Metrics

Regressor RMSE MAPE
LR 10.929± 0.222 0.5± 0.0114

Ridge 10.93± 0.223 0.501± 0.0114

Lasso 14.578± 0.317 0.765± 0.0147

DT 11.152± 0.116 0.431± 0.00508

RF 7.7931± 0.225 0.328± 0.00682

KNN 9.2053± 0.224 0.399± 0.00882

LGBM 7.7266± 0.217 0.335± 0.00717

XGB 7.449± 0.214 0.314± 0.00579

GB 8.7082± 0.211 0.379± 0.00811

CB 7.3148± 0.197 0.311± 0.00609

SVR 10.234± 0.238 0.401± 0.00927

Ensemble 7.1582± 0.224 0.306± 0.00609

Based on the MAPE values across each of the 10 regressors,
it is clear to see that the best-performing models on the full
dataset are CatBoost, LightGBM, GB and XGB, with CatBoost
performing the best overall. However, their predictive capacity
is not particularly strong. MAPE values of over 30% indicate
that although the model is adequate in its predictive capacity,
it needs to be improved. MAPE values closer to the 10-20%
range are much more acceptable regardless of domain. For
that an ensemble model based on voting criterion was imple-
mented combing the aforementioned four regressors. The res-
ults achieved by the ensemble model outperforms all other re-
gressors scoring in terms of the RMSE score achieving a 10.6784
and a relatively close to best MAPE score of 0.2764 which is
slightly higher than that achieved by LGBM regressor.

We determine the best performing model using the Kruskal-
Wallis test to determine if the average MAPE across all folds
of evaluation were comparable between the ensemble model,
CatBoost and XGBoost. The test between XGBoost and Cat-
Boost shows a statistical indifference between the performances
( H(2) = 1.46, p = 0.226 > 5% ). Similarly, the test between
ensemble model and CatBoost also shows a statistical indiffer-
ence (H(2) = 2.29, p = 0.130 > 5%). However, comparing
XGBoost and the ensemble model leads to a statistical differ-
ence (H(2) = 6.22, p = 0.0126 < 5%). Hence, we conclude
that the best models are CatBoost and the ensemble models.

4.1 Aggregated data

To further investigate the trends in NO2 levels across northern
Italy, we proceed with training models on the aggregated (by

date) dataset. A similar process is taken to first determine the
best-performing models with default parameters. Table 4 shows
the MAPE and RMSE values for the models trained on the ag-
gregated data. It is important to note that the RMSE values here
will be significantly higher than in Table 3 since the scale of the
target variable has changed (it is now at a country level rather
than a weather station level).

Table 4. Regression Model Performance Metrics

Regressor RMSE MAPE
LR 473.54± 38.9 0.229± 0.026

Ridge 474.45± 36.4 0.23± 0.0259

Lasso 473.25± 38.1 0.23± 0.0259

DT 618.83± 40.6 0.272± 0.015

RF 458.15± 39.7 0.201± 0.0251

KNN 552.34± 48.7 0.256± 0.0205

LGBM 458.05± 43.5 0.195± 0.0237

XGB 482.97± 46.2 0.207± 0.0186

GB 450.05± 42.7 0.201± 0.0239

CB 447.01± 50.5 0.191± 0.0271

SVR 970.88± 74.8 0.416± 0.0216

Ensemble 446.02± 43.6 0.194± 0.0243

Immediately, it is evident that the aggregation of the data im-
proves the predictive ability across all models. CatBoost and
the ensemble model are still part of the top-performers, while
XGBoost, Gradient Boosting, Random Forest, and LGBM all
show considerable performance too. The Kruskal-Wallis Test
(H(6) = 3.223,p = 0.6655 > 5%) shows they have statistic-
ally indifferent performance in terms of their MAPE across the
10 folds.

Additionally, we conclude that the ensemble model does indeed
explain the variance in the data, since the variance in the data
for the target variable is 894, 343.47, and the mean squared er-
ror (MSE) from the ensemble model is 198, 933.84 (≈ 22% of
dataset variance) which is far less than the variance in the data.
The MSE here is calculated by squaring Eq. 2.

With the best model’s MAPE dropping to 0.19, we see a clear
improvement in inference. To further visualize the performance
of this ensemble model, Fig. 2 shows the predictions of the
model on the last three months of aggregated data (the testing
set).

Other than the peaks, the model is able to accurately predict
the direction of the data (or in other words, the NO2 levels, and
the general shape of the curve matches the actual values. This
reflects the relatively low MAPE score that the ensemble model
was able to produce. We can further evaluate its performance
by looking at the percentage difference distribution, as shown in
Fig. 3. As the bar chart captures, we can see that the percentage
difference is skewed towards the bottom 15%, meaning that the
majority of the predictions are within 15% of the actual value.
This is a positive indicator for the model, meaning that we are
within a confident interval for predicting the data.

The clear indication from the above-mentioned results is that
aggregating data based on the date and then ensembling the top-
performing fine-tuned models is able to give us the best predic-
tions, especially when it comes to following the trends of the
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Figure 2. Prediction on the last 3 months of data (From October
2021 onward) for the Ensemble model trained on the aggregated

data. NO2 levels are represented in µg/m3.

Figure 3. Percentage Difference of the model’s prediction on the
aggregated data compared to the actual values.

data. Fig. 2 shows us this exactly: although the peaks are not
as exaggerated as with the actual data, the trends of the data are
captured entirely. This ensemble model is also able to keep the
percentage difference of its forecasts from the actual values to
below 20%, which is another indication of its strong predictive
capacity.

4.2 Geo-spatial Analysis

As mentioned in sec. 3.3, the dataset is divided based on urban
development and on the seasonality. The same methodology is
followed for fine-tuning models, but due to the high perform-
ance, models are not ensembled so as to not increase the com-
plexity. The CatBoost regressor is used here and fine-tuned for
each of the four subsets of data. The results are presented in
Fig. 5 and Table 5 revealed a minor difference in NO2 levels
between urban and rural areas, though it was not statistically
significant. This suggests that NO2 levels are likely influenced
by broader, more impactful factors rather than solely by illegal
farming practices in rural areas.

Table 5. MAPE of CatBoost models for each of the 4
sub-datasets.

Model MAPE
Urban - Spring, Summer 0.21796

Urban - Fall, Winter 0.22182

Rural - Spring, Summer 0.19988

Rural - Fall, Spring 0.22298

It is evident that on average, the models are able to accurately
predict the NO2 levels, facing the same issue of predicting the
peaks as with the full dataset presented in the previous section.
It is worthwhile to mention that the data was not pre-processed
to account for potential outliers in the NO2 values, which could
be the leading cause of this. However, with an average MAPE
score of 21.56% across the four models, it is justifiable to say
that the model can reasonably predict the NO2 levels.

The key indication of this set of results is that splitting the data
based on the seasons and urban development actually aids in
the process of predicting NO2 levels as compared to the base
models. This logically tracks as well, since we cannot expect
NO2 levels to follow the same trend across seasons and regions.

4.2.1 Feature Importance This section presents an analysis
of the feature importances for each of the four models presen-
ted in the sub-data study. We begin with Fig. 4 which shows
the feature importance for urban across seasons. On average,
we can see that features such as the precipitation have low im-
portance, especially during the fall and winter season. The two
features with the highest importance across both seasons are
the tropospheric NO2 concentration and the total NO2 concen-
tration. These two features show the highest correlation across
seasons. It is interesting to note that the correlation is slightly
higher during the fall and winter seasons. Combining this with
the fact that the correlation for precipitation is lower, we have
a more robust approach to predicting NO2 levels. On the other
hand, the stratospheric NO2 levels have significantly less im-
portance in predicting the target variable.

Figure 4. Feature importance expressed as a bar chart across
seasons for Urban points.

We can compare the results in Fig. 4 to Fig. 6, which indicates
that even for the highest correlated features, there appears to be
a drop in the importance. A direct example of this would be the
total NO2 concentration, which significantly drops in import-
ance across both seasons. The tropospheric NO2 concentration
still holds the highest importance, although the importance is
reduced during the spring and summer seasons.
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(a) (b)

(c) (d)

Figure 5. CatBoost predictions on the testing data (last three months of available data) for (a) Urban - Spring and Summer model, (b)
Urban - Fall and Winter model, (c) Rural - Spring and Summer model, and (d) Rural - Fall and Winter model. NO2 levels are

represented in µg/m3.

Figure 6. Feature importance expressed as a bar chart across
seasons for Rural points.

4.2.2 Correlation Matrices To build on the feature import-
ance study conducted in the previous section (which depends
on the models and the importances that they calculate), we can
look at the correlation matrix for each of the four sub-datasets
between all features and the target variable. Fig. 7 shows the
correlation matrix for the urban - spring and summer data. The
findings align with the important characteristics in the previ-
ous section, particularly when showing the high correlations
between the target variable and the various NO2 indicators avail-
able. Changes across the different subsets of the data are min-
imal and thus the corresponding correlation matrices have been
omitted, although they all follow almost the exact same trends.

5. Conclusion

In conclusion, this study demonstrates the feasibility of estimat-
ing nitrogen dioxide (NO2) levels using open-source data across
Italy, considering spatial and temporal variations. The results
indicate that incorporating seasonal and urban development factors
significantly enhances prediction accuracy, with an average MAPE
score of 19% achieved using ensemble models. The analysis
showed that there is a small difference between NO2 levels in
urban and rural areas but not statistically significant which may
indicate that NO2 levels does not seem to be a result of illegal
farming practices in rural areas alone but are a result of a wider
and more influential factors. The results showed that ensemble
methods are particularly effective in capturing complex patterns
in NO2 distribution. Future work could expand the model’s
application to other regions to test its generalizability, while
incorporating additional environmental variables could further
improve accuracy. Advanced machine learning techniques and
improved data collection processes also hold potential for refin-
ing NO2 estimations using open-source data.
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