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Abstract

Autonomous vehicles (AVs) require accurate global pose estimation to operate effectively. A common approach involves utiliz-
ing perception sensors to extract environmental features which are used to geo-reference the vehicle with pre-defined maps. High
Definition (HD) maps are frequently used for this purpose due to their detailed feature sets. However, the use of HD maps presents
challenges as they are not frequently unavailable and their custom generation involves considerable complexity and cost. Con-
versely, Level of Detail 2 (LoD2) maps are freely available for numerous cities and are regularly updated, hence they can offer a
potential solution. However, due to their geometric simplifications, the applicability of LoD2 maps for AV pose estimation remains
uncertain. In this study, we investigate the impact of these simplifications and assess the suitability of LoD2 maps for AV pose
estimation. We perform a comparative analysis between HD and LoD2 maps in a simulated CARLA environment, employing an
Error State Kalman Filter (ESKF) to estimate the position, velocity, and orientation of an AV. We showcase our results using ideal
sensors to isolate the effects of LoD2 maps, as well as realistic sensors to evaluate their performance in real-world scenarios.

1. Introduction

In Autonomous Vehicles (AVs), lower levels of driving auto-
mation require the vehicle to perform basic driving tasks such
as emergency braking, lane centering, and adaptive cruise con-
trol. These tasks are performed based on real-time assessments
of the vehicle’s immediate environment and do not require pre-
cise knowledge of the vehicle’s position or long-term planning.
Conversely, higher levels of automation require AVs to take full
control and perform the navigation tasks autonomously. To plan
the journey and execute the required driving maneuvers suc-
cessfully, the AV’s pose (typically consisting of the position,
speed, and orientation) must be known within a global refer-
ence frame. Additionally, safe operation necessitates high pos-
itional accuracy, of 0.1 m at 95% confidence level (Reid et al.,
2019). To meet these requirements, geo-referencing techniques
are frequently utilized. Geo-referencing involves using sensors
to collect geo-spatial data and aligning it with a predefined ref-
erence frame within a map to determine the vehicle’s pose. A
prominent example of these techniques is Global Navigation
Satellite Systems (GNSS), which can provide up to 3 cm accur-
ate global position measurements, especially when augmented
with techniques like Differential GNSS (D-GNSS) (SAPOS,
2015). However, their performance suffers in urban environ-
ments due to factors such as signal blockage and multipath re-
flections, which reduce accuracy and introduce service interrup-
tions. To mitigate these challenges, self-contained sensors are
employed. Unlike GNSS, these sensors don’t rely on externally
transmitted signals, instead, they collect measurements of their
surroundings and identify landmarks, which are then matched
and aligned with the pre-existing map. For this geo-referencing
approach to be viable in AVs, the maps should meet several cri-
teria; they must describe accurate and distinct landmarks for the
sensors to identify, be frequently updated to match changes in
the real world, be computationally efficient to search and store,
and ubiquitously available.

A popular choices of maps in the literature is High-Definition

(HD) maps. While they lack a unified definition, HD maps
are described as multi-layered representations of the environ-
ment containing heterogeneous data regarding road connectiv-
ity, road features such as road signs, intersections, and traffic
lights, accurate lane information such as lane lines and road
markings, and sensor representations of the environment in-
cluding 3D point clouds from laser scanners, as well as mono
or stereo images (Liu et al., 2020, Elghazaly et al., 2023). To
utilize HD maps, some studies detect lane lines, either by util-
izing LiDARs (Ghallabi et al., 2018, Rohde et al., 2016), or
though cameras (Suhr et al., 2017, Han et al., 2018), and in
some cases, the detected features are extended to include road
signs as well (Guo et al., 2021). While previous works fo-
cused on road-specific features, various studies employed al-
ternative methods. For instance, in (Wan et al., 2018, Chen et
al., 2021, Tao et al., 2022), the authors rasterized LiDAR scans
into 2D images, while in (Li et al., 2018), non-descriptive fea-
tures were extracted from camera images. Nevertheless, the
processed measurements are then matched to a map in order to
estimate the pose of the vehicle. Due to the variation in utilized
features, the previous works had to mostly construct their own
maps. The maps were created prior to the experiments by scan-
ning the environment for the required features, and then estim-
ating the trajectory using a mixture of selecting a path with op-
timal D-GNSS coverage, conducting multiple iterations, manu-
ally measuring and geo-tagging the desired map features, post-
processing techniques, or relying on third-party companies. To
further refine the estimated pose, data from Inertial Measure-
ment Units (IMU), wheel odometry, and in some cases GNSS,
are integrated using a variety of filters, such as Kalman Filters
(KF), Extended Kalman Filters (EKF), or Particle Filters (PF).

The literature review reveals that despite their popularity, HD
maps have several drawbacks (Elghazaly et al., 2023):

e Lack of standardization: the literature varies significantly
in terms of the data included within the map and the man-
ner in which the data is represented.
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e High costs and labor-intensive: Due to the non stand-
ardized nature, nearly every HD map-based approach re-
quired the researchers to create custom reference maps,
often necessitating specialized equipment, sophisticated
post-processing techniques, and multiple scans. Replic-
ating these procedures on a wider scale with frequent up-
dates presents substantial challenges.

e Storage limitations: In scenarios where access to images
and point clouds is necessary, HD maps are computation-
ally expensive to store, and in some cases, they require
constant communication with a server.

Given the challenges associated with HD maps, researchers
have explored alternative mapping solutions that balance accur-
acy, updatability, and computational efficiency. For instance,
(Kassas et al., 2020) relied on cellular Signals of Opportun-
ity (SOP) to estimate the vehicle’s pose, while (Yoneda et al.,
2018) utilized Millimeter-Wave Radar (MWR) to detect objects
such as poles and trees and align them with a map. Another
promising approach was proposed by (Javanmardi et al., 2019,
Bureick et al., 2019), where planar maps containing simplified
representations of the environment were employed. This ap-
proach simplifies the mapping procedure, with the added benefit
of reducing the map storage size and feature alignment time. In
the case of (Javanmardi et al., 2019), the map was acquired by
scanning the test environment with a LiDAR and subsequently
post-processing the scans using a Random Sample Consensus
(RANSAC) algorithm to estimate building planes. Conversely,
authors in (Bureick et al., 2019) employed Level of Detail 2
(LoD2) maps and Digital Terrain Models (DTM).

The use of LoD2 maps is particularly noteworthy, as these maps
offer several advantages over HD maps, such as being standard-
ized and adhering to the CityGML standard (Kolbe et al., 2021),
requiring less storage space, being easier to generate and thus
maintain, and having freely available LoD2 maps for numer-
ous cities worldwide (Wysocki, 2024, Peters et al., 2022), some
of which are updated annually (3D-Gebidudemodelle LoD2
Deutschland, n.d.), thereby eliminating the added complexity
of generating a custom map. Nevertheless, the impact of LoD2
maps’ geometrical simplifications on geo-referencing accuracy
remains unexplored. This study aims to quantify this impact by
comparing the performance of LoD2 and HD maps in a simu-
lated urban environment. The comparison is conducted utiliz-
ing the Error-State Kalman Filter (ESKF) presented in (Ernst
et al., 2023). This filter employs the implicit measurement ap-
proach from (Bureick et al., 2019), but replaces the IEKF with
an ESKF to reduce linearization errors, and substitutes the con-
stant velocity model with a kinematic model based on IMU
measurements. By using one estimation method for both maps,
the effects of geometrical simplifications are isolated from other
factors specific to the geo-referencing and filtering approach..

This article is organized as follows: In section 2, we discuss the
simulation environment and map generation, and we introduce
the pose estimation filter and the evaluation criteria used for
assessing the performance of the filter. In section 3, we present
the results from two different scenarios. Finally, in section 4 we
conclude the article with a summary and an outlook.

2. Methodology
2.1 ESKF & Implicit measurements

Given that we are interested in global pose estimation, it is be-
neficial to distinguish between the different reference frames

and how the quantities are represented in them. In our case, the
global frame of reference is denoted by the letter o, while the
IMU and LiDAR frames are denoted by ¢ and [, respectively.
Since a LIDAR measurement z is measured with respect to the
[ frame, we have to calculate the representation of that measure-
ment in the o frame to carry out our estimation procedure. To
do so, we use the 4 x 4 transformation matrix {7} as follows:

0 1 M

R 7t
°zr = Ty, °zx = {l BOLRL ogy
where, °zy, is measurement in the global frame, °zy, is the meas-
urement in the LiDAR frame, ; Rj. and j't, are the 3 x 3 rotation
matrix and the 3 x 1 translation vector of frame [ with respect to
frame o, respectively, and the subscript £ denotes the time step

at witch the measurement occurred.

Naturally, the transformation matrix is not known a priori, and
relies on the states estimated by our filter. In our context, the
state vector x from (Ernst et al., 2023) is defined as:

T _ T T T i T T
Xk *[?tk (VT Akt apk Zwb,k] )

where, ¢t is the 3D translation vector, 7 vy, is the 3D velocity
vector, 7qy is the orientation represented in a 4D quaternion
vector, and ‘ay, ; and ‘wy, ), are the 3D accelerometer and 3D
gyroscope biases in the IMU frame ¢, respectively. Unlike other
KFs, an ESKF does not directly estimate the states, instead it
estimates the prediction errors, which are subsequently used to
correct the states. Since linearization around the errors tends to
be more stable, this method leads to improved accuracy (Sola,
2017). We therefore introduce the error state vector dx, which
is defined as:

ox” = [5p6T 5pvi” 5707 '’ S| )

where the operator §(-) indicates the error of a component, and
670y, is the orientation error represented as axis-angle.

The filter iterates between a prediction step, where the system
physical model is used to predict the pose, and a correction step,
where our measurements are geo-referenced to estimate the er-
rors and correct the prediction, Figure 1 depicts the flowchart
of our filter, which is explained in this section. The physical
model used in the prediction step is a 3D point kinematic mo-
tion model f():

Xpjk—1 = f(Xp—1, Ug) 4

where uy, is the input vector consisting of the IMU measured
acceleration ay and rotational velocity wy. These measure-
ments are processed by removing the estimated biases and grav-
itational vector, and are then integrated to estimate the linear
velocity, and the linear and angular displacements. Since the
prediction step falls outside of our scope, we refer to (Ernst et
al., 2023) for the full mathematical description. Next, the cov-
ariance matrix P is computed as:

Py = FoPaoa Fy + FaQuFy @)
where F is the Jacobian of f() with respect to the error estim-
ates at time k, F3, is the Jacobin of f() with respect to noise

model at time k, and @Q,, is the model noise covariance matrix.

In the subsequent phase, we initiate the correction step by geo-
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Figure 1. Flowchart of the filter algorithm

referencing the LiDAR measurements. To enhance computa-
tional efficiency, we downsample the measured point cloud to
M points utilizing a voxel grid filter. Unlike conventional meth-
ods that use the centroid of each voxel, we select the nearest
measured point within each voxel to preserve the original data
and prevent the loss of details. To align the downsampled point
cloud with our map frame, it is transformed into the global co-
ordinate system, as described in equation 1. Then, for each
measurement point, we identify the closest map feature within
a predefined spherical threshold radius r, assigning the meas-
urement to the corresponding feature. For LoD2 maps, these
features comprise the planes of buildings or the DTM cells,
whereas in HD maps, the features are represented by PCL
points. To incorporate these assignments, we employ the im-
plicit plane equation as our measurement function h:

h = [ne,ny,nz,d] [OZTJ“] (6)

where, ns, ny, n. are the plane normal vector components, d is
the plane distance from the origin, and °z,, ; is the m'" meas-
ured point assigned to that plane. The update step is based on
the IEKF from (Bureick et al., 2019), hence it iterates until the
change in the error state magnitude € |54, || is below a certain
threshold €,,,42, Or it reaches the maximum number of iterations
J. The first iteration is initialized as follows:

J_ Jj—1 __ o_j _o
Xk|k™ = Xk|k—1; (Sxk =0, Zok = Zmk @)

where j is the number of the current iteration. For each sub-
sequent iteration, we calculate 0x;, using:

Pl = APy AT 4 BQ.BT ®)

K7 = P, AT (P ©)

W =1+ B (°z), |~ zmx) + AV%7 0 (10)

ox’ = — KW (11)

where, A7 and B’ are the Jacobians of h() with respect to
Oxp|,” and "zfnyk respectively, and Q. is the measurement

noise covariance matrix. We then adjust our estimates vector
using the estimated errors:

xk|kj+1 = Xk|lk—1 @Cbckj (12)

the € symbol indicates that each adjustment is carried out sep-
arately, as required by the estimated quantity. If the stopping
conditions aren’t met, we update the observations for the next
iteration:
. . . 1

2 =2 . —Q.(B)) P W (13)
However, if the iterations are completed, we compute the new
Py, using:

Pe=(I - KA)Py,1(I - KA)" + K(BQ.B"K" (14)

The filter then loops back to the prediction step based on
a chosen frequency, while the update step gets carried out
whenever a new measurement is available for correction.

Figure 2. The two trajectories. Trajectory P1 shown in blue and
Trajectory P2 shown in red

2.2 Simulation environment

There are multiple motivations for choosing a simulated envir-
onment. First, we require a dense and highly accurate point
cloud to create and compare the maps. Acquiring such point
clouds in the real world introduces new sources of errors, thus
affecting our comparison. A simulated environment on the
other hand, provides the absolute ground truth. Secondly, since
the algorithm requires assigning LiDAR points to planes, points
belonging to dynamic objects such as pedestrians and vehicles
might be wrongly assigned. The problem of point assignments
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affects both maps and is an attribute of the chosen filter; hence it
falls outside the scope of this article, which is specifically con-
cerned with the effect of geometrical simplifications. Another
motivation is the ability to isolate and focus solely on the ef-
fects of LoD2 maps, by simulating ideal sensor measurements
that exclude sensor noise influences. Additionally, a simulation
allows us to repeat the experiment with added sensor noise and
show how the two maps compare in more realistic scenarios. Fi-
nally, a simulation enables a more generalized comparison by
allowing the selection of an environment with diverse building
structures and road infrastructure.

CARLA (Dosovitskiy et al., 2017) is a simulation environment
for autonomous driving, developed using Unreal Engine. We
selected this software due to its extensive validation in the liter-
ature and its flexible programming interface, which enables the
selection of specific sensors and map configurations tailored to
our scope. We decided to use the pre-loaded map “Town10” as
it represents a diverse urban city, including skyscrapers, resid-
ential, industrial, and public buildings, as well as varying road
and junction sizes. In addition, we used the built-in autonom-
ous driving function to operate the test vehicle along two dif-
ferent trajectories, shown in Figure 2. The first trajectory P1
(blue) follows a curvy path between residential buildings, while
the second trajectory P2 (red) consists of longer straight paths,
wider turns, a larger intersection, and a mixture of residential
buildings and high-rises. P1 was 419 m in length and took
56.7 s to complete, while P2 was 417 m and took 70.75 s.
The scenarios were limited in length by the size of the map
but were carefully designed to represent various driving condi-
tions, including low-speed and high-speed segments, multiple
start-and-stop instances, as well as the specific trajectory fea-
tures mentioned previously.

2.3 Maps Generation

Since we are working in a simulated environment, we had to
create both maps. For the HD map, we acquired measurements
using a high-density scanning LiDAR. Since CARLA does not
simulate the rolling shutter effect, all LIDAR points within an
epoch shared the same pose. Given that we have access to the
true LiDAR pose and noise-free distance measurements, the
HD map was constructed by transforming the LiDAR frame [
measurements into the global frame o using equation 1, then
collating the results into a comprehensive map.

As for the LoD2 map, we used the buildings” 3D models and
manually traced each building footprint. Subsequently, we sim-
ulated an airborne LiDAR to capture measurements of building
heights and roof geometries. Utilizing ArcGIS, we then conver-
ted the acquired aerial map into polygon meshes, extending the
building footprints to the roofs in accordance with the CityGML
standard (Kolbe et al., 2021). among the original map, the HD
point cloud, and the LoD2 map. Upon examining Figure 3a
and Figure 3b, it becomes apparent that certain buildings are
absent from the LoD2 map. Nonetheless, the absence of these
buildings does not impact the performance of our filter. When
comparing the HD and LoD2 maps, as depicted in Figure 3c, it
is evident that the HD map captures more detailed features than
the geometrically simplified LoD2 map. The influence of these
additional features on geo-referencing and pose estimation is
our main scope of interest.

Lastly, given that our geo-referencing technique relies on plane
equations, it was necessary to provide the filter with plane nor-
mals. For LoD2 maps, this process is straightforward, as the

(©

Figure 3. The generated maps. Figure 3a shows the original
”Town10” map. Figure 3b shows the generated LoD2 map.
Figure 3c highlights the differences between the HD map point
cloud (white) and the simplified LoD2 map (red)

environment is represented by planes. In contrast, for HD maps
we estimated the plane normals offline and stored the results to
enhance the filter’s runtime efficiency.

2.4 Parameters Tuning

By analyzing Equation 9, it is evident that the Kalman gain K,
which determines the extent to which a measurement corrects a
predicted state, is significantly influenced by the noise matrices
Qr and Q.. It is therefore important to set these matrices to
achieve good performance. While the conventional approach
of populating these matrices with sensor variances generally
leads to convergence, it is advised to further tune these values to
gain better performance (Abbeel et al., 2005). The adjusted val-
ues are intended to account for additional perturbations arising
from model mismatch, filter linearization, and discretization er-
rors. In our implementation, the (), matrix is diagonal and
consists of the accelerometer and gyroscope bias noise densit-
ies 0q,,, 0w, and bias instabilities 04,,, 0w, :

Qn = diag(ain A2, ain A, 04, AL, 04, Al) (15)

where, the scalar At is the time step between each up-
dates, which we set to match the accelerometer and gyroscope
sampling rate. The @), matrix on the other hand is obtained by
converting the LiDAR distance o4, horizontal angle o4, and and
azimuth angle oy uncertainties into their Cartesian equivalents,
following the approach provided in (Ernst et al., 2024).

To fine-tune our filter, a comprehensive parametric sweep was
conducted across the aforementioned parameters and the point-
plane assignment threshold radius r. The range of parameters
explored during this sweep is presented in Table 1. This sweep
was performed independently on P2 for four distinct scenarios:
an HD map with noiseless measurements, an LoD2 map with
noiseless measurements, an HD map with noisy measurements,
and an LoD2 map with noisy measurements. The rationale for
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Parameter HD Map LoD2 Map IMU Settings
Min | Max | Min | Max Frequency 100 Hz '
Ca,, (m/(52 /HZ)) 4.8 91.2 4.8 4.8 Accelerometer nf)iscj, densi}y (6.16, 4..61, 35)2) . {073 771/7(3521 /sz)
d NGE 3 30 16 16 Accelerometer bias instability (22.26, 20.35, 36.36) - 10~° m/s
Twn ( 69/2(8 Z)) Gyroscope noise density (14.89, 19.48, 13.75) - 10> deg/(sVHz)
Oay (m/s ) 26 416 26 26 Gyroscope bias instability (70.47, 65.31, 68.18) - 10~ deg/s
0w, (deg/sec) 34 | 323 | 68 68 LiDAR Settings
o4 (mm) 8.5 8.5 550 | 2500 Frequency 10 Hz
o4 (mdeg) 48.7 | 48.7 50 5050 Range 100 m,
oo (mdeg) 208 208 350 5050 Num. Vertical scan lines 16
7 (m) 0. [ 0. [ 005 07 Upper FOV 157
Lower FOV —15°
Rz ncertaint 8.5 mm
Table 1. List of the tuned parameters and the start and end range Hf)fiiﬁt,:l anglleyuncenainty R7 ’::LL(;Z "
for the sweep function Azimuth angle uncertainty 29.8 mdeg

selecting different parameter ranges for each scenario is de-
tailed in Section 3.1. In each case, the parameters that min-
imized the average translation errors, as defined in Equation 17,
were selected.

2.5 Evaluation criteria
To evaluate the filter’s performance, we compute the errors us-

ing the Euclidean distance, denoted as L2;, between the estim-
ated and true values of a vector at time k:

L2u5 =/ (@k — r1)2 + (Ys — yrk)2 + (26 — 204)2 (16)

Here, =1, yi, 21 represent the three-dimensional components
of the estimated vector w, while z, k, Yr k, zr i denote the cor-
responding components of the true vector. The vector u repres-
ents any of the translation, velocity, or orientation (expressed in
Euler angles) vectors. Here, we assume that the small-angle ap-
proximation applies, and difference between the estimated and
true orientation values is minimal, typically within a few de-
grees. Additionally, we assume that the vehicle does not en-
counter gimbal lock conditions, as it is driving on relatively
flat ground. Hence, the Euclidean distance provides a reliable
and consistent metric for representing the filter’s performance
across the estimated variables. To represent the error over the
complete trajectory, we calculate the Mean Euclidean Distance
(MED) of each vector:

K
1
MEDy = - ;LZW 17)

To investigate the loss of accuracy associated with LoD2 maps,
we introduce the generalization factor :

Y = T LeD? a8)
w,HD

Ideally, we seek ~y to be as low as possible, which would suggest
a reduced negative impact from the geometrical simplifications
inherent in LoD2 maps. It is important to note that while cal-
culating ~ using MED offers greater robustness to outliers, the
value of v can become skewed, particularly in the context of
ideal measurements where the HD map may significantly out-
perform LoD2 maps. Therefore, it is crucial to employ both
metrics when evaluating the suitability of LoD2 maps.

3. Results

For our tests, we conducted two experiments for each traject-
ory: one with ideal measurements, and one with added sensor
noise. The first experiment demonstrates the impact of LoD2

Table 2. Sensor parameters used for the experiments

simplifications on geo-referencing, while the second experi-
ment compares LoD2 maps to HD maps in realistic scenarios.
The simulation consisted of a sedan vehicle equipped with a
”Velodyne VLP16” LiDAR, and a ”Microstrain 3DM-GQ4-45”
IMU. The parameters for these sensors were based on their pro-
spective data-sheets, and are provided in Table 2. For tests
with ideal measurements, the noise, instability, and uncertainty
parameters were set to zero. The CARLA simulation phys-
ics engine time-step was set to 1 ms in synchronous mode,
and the ESKF filter was implemented in an unoptimized MAT-
LAB code. The tuned filter parameters from Section 2.1 were
employed as shown in Table 3. It is important to distinguish
between the sensor simulation parameters in Table 2 and the
tuned filter parameters in Table 3. The former were used ex-
clusively for simulating sensor behavior, while the latter were
adjusted to account for additional perturbations and enhance fil-
ter performance. It is important to note that the real-time cap-
abilities of the geo-referencing techniques are not evaluated in
this section, as they are influenced by external factors such as
hardware choice and code optimization. These aspects fall out-
side the scope of this research, which aims to benchmark the
performance of LoD2 maps regarding their geo-referencing ac-
curacy.

3.1 Parameters Tuning

Before analyzing the test results, it is crucial to examine Table
1, which showcases the range of parameters within the sweep.
Notably, for the HD map, parameters pertaining to the predic-
tion step 0q,,, Tay s 0w, , and o, were varied while maintain-
ing the measurement parameters, o4, 04, and oy, at their de-
fault values. This is contrasted with the LoD2 maps, where the
opposite was applied. This methodology was developed after
observing that when all parameters were varied, certain para-
meters consistently remained at their default value, hence the
parameters were fixed to reduce the time required for the tun-
ing process.

These findings suggest that when the HD map is utilized, the
filter places greater emphasis on the correction step due to the
map’s accurate representation of the environment, which re-
duces reliance on the prediction step to minimize errors arising
from filter linearization and physical model mismatch. Con-
versely, the use of the LoD2 map necessitated an increase
in measurement noise, compensating for geometric simplific-
ations and resultant discrepancies between the map and the real
environment as measured by the LIDAR. Consequently, the pre-
diction parameters were kept at their minimum to maintain the
Kalman gain at an optimized value. It should be noted that the
parameter tuning was bounded below by the sensors’ default
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Filter Tuned Parameter Noiseless Measurementes Noisy Measurements
HD Map | LoD2 Map HD Map LoD2 Map

Point-plane assignment Threshold r 0.1m 0.4 m
Accelorometer noise density oq,, 76.8 77— | Values from Table 2 | 86.4 57— | Values from Table 2
Accelerometer bias instability o,,, 312 22 Values from Table 2 390 R Values from Table 2
Gyroscope noise density o, 16 S’"d% Values from Table 2 64 Smd% Values from Table 2
Gyroscope bias instability o, 68 mdeg Values from Table 2 | 272 mdeg Values from Table 2
Range uncertrainty o4 8.5 mm 0.7m 8.0 mm 2.3m
Horizontal angle uncertainty o, 48.7 mdeg 0.55 deg 48.7 mdeg 4.05 deg
Azimuth angle uncertainty oy 29.8 mdeg 0.55 deg 29.8 mdeg 4.05 deg

Table 3. Tuned filter parameters used for the different test scenarios

Noiseless Measurementes Noisy Measurements
Eval. Criteria Traj. P1 Traj. P2 Traj. P1 Traj. P2
HD Map | LoD2Map | HD Map | LoD2 Map | HD Map | LoD2Map | HD Map | LoD2 Map
MED,; (mm) 0.4 137 0.2 92 1.9 153 1.8 97
MED, (mm/s) 14.3 76 7.7 30 25.9 64 22.6 40
MEDg (mdeg) 4 148 1.7 57 8.1 178 7.2 123
Yt 342.5 460 80.5 53.9
Yo 5.31 3.90 2.47 1.77
Yo 37.0 33.5 22.0 17.1

Table 4. Evaluation results for the different test scenarios

values to prevent overconfident predictions; thus, the search
space for prediction parameters was not expanded.

3.2 Ideal Measurements

In this scenario, HD map substantially outperformed the LoD2
map, achieving mean translational errors of 0.4 mm and
0.2 mm across P1 and P2, respectively, compared to the LoD2
map’s mean translational errors of 137 mm and 92 mm, re-
spectively. Consequently, v; were calculated to be 342.5 for
P1 and 460 for P2. The effects on velocity and orientation pre-
dictions were comparatively less pronounced, with 7., and ~yy of
5.31 and 37 for P1, and 3.9 and 33.5 for P2, respectively. The
significant discrepancies in the generalization factors across dif-
ferent estimated quantities can be attributed to the characterist-
ics of the prediction and correction models used in this study.
As detailed in Section 2.1, the prediction phase utilizes acceler-
ometer and gyroscope readings, which are integrated over time
to derive the necessary estimates. Given that acceleration is
a third-order derivative, the first-order translational estimate is
inherently damped by the covariance propagation and is less in-
stantaneously susceptible to prediction errors when compared
to velocity and orientation estimates. In contrast, the measure-
ment model provides direct corrections for translation during
the correction step. Therefore, the geometric simplification er-
rors introduced by LoD2 in the measurement step have a more
substantial impact on translation estimates compared to the ori-
entation and velocity estimates.

To closely examine the specific sources of errors in our test
scenario, we analyze the translational errors between the HD
map and the LoD2 map along P2, as depicted in Figure 4. In the
case of the HD map, noise is observed between the time peri-
ods of 24 sec to 35 sec, 44 sec to 48 sec, and between 58 sec
to 66 sec. These intervals correspond to situations where the
vehicle underwent accelerations, stops, and turns. The primary
source of these errors can be attributed to the limitations of our
prediction model in perfectly capturing such maneuvers. Non-
etheless, these errors are within millimeters and are hence tol-
erable. In contrast, the LoD2 map translational errors signific-
antly increase when entering the large intersection in the south,

around 30 sec. This can be explained by the reduction in sur-
rounding building density, the added complexity of identifying
the correct planes around corners, and the increased complex-
ity of the building facades, which contain varying protrusions
and irregular shapes. This explanation is supported by examin-
ing the average distance errors between points assigned to the
LoD2 model and their true measured locations. Prior to enter-
ing the intersection, the average distance point-to-LoD2 model
was approximately 0.025 m, while the mismatch between the
LoD2-to-true locations was about 0.052 m. After entering the
intersection, the average distance to the LoD2 model remained
at 0.025 m, whereas the distance to the true locations increased
significantly, averaging around 0.08 m.

3.3 Noisy Measurements

As expected, Table 4 shows that the introduction of noise results
in increased errors across all estimated quantities, with LoD2
map exhibiting a greater magnitude of error increase compared
to the HD map. However, the generalization factor is signific-
antly reduced for all estimated quantities, a phenomenon attrib-
uted to the skewness described in Section 2.5. Figures 5 and 6
illustrate how in LoD2, noisy measurements introduced oscil-
lations in pose estimates along P1, likely from broader point
assignments (increased r) that incorporated non-LoD?2 features
such as balconies, window frames, bay windows, and air con-
ditioning units. This is indicated by the increase of the aver-
age point-to-LoD2 plane from 2.5 ¢m in noiseless scenario, to
0.1 ¢m in noisy scenarios.

4. Discussion & Conclusion

Defining a required estimation accuracy for AVs poses signi-
ficant challenges due to varying standards that depend on op-
erating environments, vehicle types, regional regulations, and
the available road infrastructure. For instance, (EUSPA, 2021)
recommends a positional localization accuracy of 0.2 m at
99.9% availability, while (5G-PPP, 2015) suggests an accuracy
of 0.3 m. In contrast, the 0.1 m accuracy requirement at 99.5%
availability proposed by (Reid et al., 2019) aligns best with the
specific demands of this study, as it is tailored to “local roads”
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Figure 4. Error in position estimates along trajectory P2 with
noiseless measurements, comparing HD (top), and LoD2 map
(bottom)

typically characterized by building density and limited GNSS
availability. These constraints support the potential utility of
LoD2 maps in such contexts.

Our study demonstrates that while current LoD2 map imple-
mentations may not yet enable full autonomy, they show signi-
ficant promise as a lower-cost alternative to HD maps.Notably,
the estimated positional accuracy remained within the alert
limit of 0.29 m for the majority of the time, and the estimated
angular accuracy adhered to the 0.5° requirement suggested by
(Reid et al., 2019). These results suggest that with error mitig-
ation, LoD2 maps could be effectively utilized in AVs.

The primary sources of error for LoD2 maps stemmed from
incorrect point-to-plane assignments during interactions with
low-density or geometrically complex building facades, par-
ticularly during turns. This misalignment often arose due to
LoD2’s simplified geometry, which lacks the granularity found
in HD maps. To mitigate these issues, we recommend the in-
tegration of advanced point assignment algorithms for better es-
timation and extraction of planer surfaces from LiDAR data.
Additionally, incorporating auxiliary sensors, such as a wheel
encoder, could enhance orientation estimation and improve the
point assignments during complex maneuvers. The inclusion
of cameras may also support feature rejection, further reducing
errors by filtering out non-essential features.

In conclusion, while LoD2 maps exhibit considerable potential
as a cost-effective solution for AV navigation, further research
is necessary to enhance error mitigation strategies, particularly
through optimizing point assignments and refining sensor fu-
sion techniques. Such research would offer valuable insights
into the capabilities of LoD2 maps and their role in the navig-
ation paradigm, whether as a replacement for HD maps or as a
complementary layer within them, aimed at reducing mapping
requirements in urban environments.

6-11 April 2025, Dubai, UAE
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Figure 5. Error in position estimates along trajectory P1 with
noisy measurements, comparing HD (top), and LoD2 map
(bottom)
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Figure 6. Error in orientation estimates along trajectory P1 with
noisy measurements, comparing HD (top), and LoD2 map
(bottom)
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