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Abstract

Topographic processes, such as sediment erosion, accumulation, and transport are crucial for understanding the evolution of natural
landscapes. Current developments in permanent laser scanning (PLS) technology and 4D change detection methods have made it
possible to extract spatiotemporal change objects from near-continuous 3D observations, e.g., 4D objects-by-change. However, the
automatic characterization and identification of these processes remain challenging due to the complex spatiotemporal data and un-
predictable types of topographic processes in natural environments. In this paper, we present a time series-based unsupervised deep
clustering framework for identifying topographic processes without manual feature engineering and annotations. By leveraging the
representation learning capability of autoencoders, especially using convolutional neural networks (CNNs) as feature extractors, our
approach implements the dimensionality reduction of the original inputs to uniform low-dimensional vectors in latent space. Sub-
sequently, after jointly optimizing the reconstruction and clustering loss, our model generates unique clusters with high intra-cluster
similarity and inter-cluster variability. We validated the proposed method on a six-month 4D dataset, acquired at Kijkduin sandy
beach (The Netherlands), yielding distinctive clusters that correspond to sediment change phenomena. Our results demonstrate that
the deep learning-based method successfully identifies topographic processes, providing an efficient and scalable alternative to tra-
ditional feature engineering-based approaches. This work highlights the potential for automating topographic process identification
and supporting long-term environmental monitoring.

1. Introduction

Topographic changes are countlessly and constantly occurring
across spatial and temporal scales on Earth’s surface. These
changes shape diverse landscapes with complex morphology
from high-mountain to coastal environments (O’Dea et al.,
2019). The factors that induce topographic changes can be
attributed to different environmental forces (e.g., wind, water,
tectonic activities) or anthropogenic influences (e.g., infrastruc-
ture and different forms of land use). Understanding the im-
pact of these activities on surface evolution poses significant
challenges, such as the complex composition of activities, un-
predictability of natural hazards, and long-timescale monitor-
ing. However, through the systematic observation and analysis
of surface changes, it is possible to detect and infer patterns
that cause topographic dynamics (Kromer et al., 2017). This
is essential for better understanding the underlying environ-
mental processes and their interactions with human activities
and provides valuable information to mitigate, for example, po-
tential climate change consequences (Eitel et al., 2016).

1.1 From Change Detection to Characterization

Multi-temporal 3D observation acquired by LiDAR sensors or
photogrammetry has shown the potential to increase our insight
into the mechanisms of topographic dynamics. Surface changes
can be detected and quantified by magnitude or volume between
multiple epochs of 3D point clouds (Qin et al., 2016). As high-
frequency (sub-hourly to weekly time intervals) and high spatial
resolution (sub-centimeter to meter) 4D point cloud datasets are
becoming increasingly available through permanent laser scan-
ning (PLS) (Eitel et al., 2016), the exploitation of the dense
point cloud time series that has richer spatiotemporal informa-
tion is actively encouraged in the detection of subtle processes

of surface dynamics (Anders et al., 2020; Vos et al., 2022;
Kuschnerus et al., 2024). Leveraging the spatial and temporal
properties of 4D datasets, many studies demonstrate a research
focus shifting from few epochs to near-continuous monitoring
of topographic dynamics (Woodcock et al., 2020; Kromer et al.,
2017; Williams et al., 2018; O’Dea et al., 2019).

To automatically extract surface changes over a long period,
a time series-based topographic change analysis advances the
pairwise change detection to ’4D objects-by-change’ (4D-
OBCs) (Anders et al., 2021). Spatial neighborhoods that ex-
perience similar topographic processes within identified sub-
periods are detected based on their time series similarity. The
resulting object defined by spatial extent and timespan repres-
ents an individual topographic change process (Anders et al.,
2020, 2021). While this enables the automatic extraction of nu-
merous topographic changes from thousands of epochs of point
clouds, their interpretation is difficult without further grouping.
However, methods for the characterization of these changes
are still lacking in research. An accurate way to categorize
these changes is expert labeling, but it is time- and human-
resource-consuming. Therefore, it is highly relevant to develop
a pipeline with high degree of automation, i.e. low supervi-
sion and manual inputs, to assign meaningful labels to change
processes. This is a key step in pushing the paradigm from
topographic change detection to change characterization and
bridging 4D change analysis and environmental monitoring.

Recent research directly applies clustering methods (e.g., K-
Means, DBSCAN, and agglomeration clustering) on full point
cloud time series, which enable grouping of full-length sur-
face time series (Kuschnerus et al., 2021). Furthermore, for
object-wise topographic changes, specific spatial and temporal
handcrafted features derived from 4D-OBCs are used as the in-
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puts of self-organizing map (SOM) for clustering change ob-
jects into different groups (Hulskemper et al., 2022). Beyond
this unsupervised grouping, a supervised classification solution
can be considered: a classifier is trained with labeled data, and
the target class of each change object from real-world data is
inferred. Zahs et al. (2024) propose to leverage synthetic 4D
datasets and pre-defined labels for this. However, these meth-
ods highly depend on feature engineering and require a good
understanding of the dataset and preferably prior knowledge of
types of changes in scenarios.

In general, topographic monitoring contains a series of tasks
like detection, classification, identification, and prediction of
changes. Taking sequential 3D observations as an example,
change detection determines ”when” and ”where” a change oc-
curs. Given the location and timestamps of the change inform-
ation, change classification decides on the ”what” the type of
change is (i.e., erosion, deposition, and transportation of surface
materials) and may include information relating to the drivers
(e.g., environmental forces or anthropogenic influences). The
”when”, ”where”, and ”what” together contribute to the change
identification. As automatic change detection methods have re-
cently been developed for 3D time series analysis (Anders et
al., 2021; Winiwarter et al., 2023; Kuschnerus et al., 2024), this
paper aims to enhance change identification to understand the
extracted change objects by using deep learning strategies.

1.2 Deep Learning for Topographic Change Analysis

Typical feature engineering and machine learning algorithms
are commonly used to find intrinsic patterns among geospa-
tial or time series data (Sarker, 2021). However, defining the
features to be used for classification is subjective, depending
on expert knowledge. The reproducibility of feature engineer-
ing strategies across different geographic settings is even more
challenging due to the different spatiotemporal properties and
unpredictable types of changes, especially when spatial and
temporal features need to be considered simultaneously. Recent
advances in representation learning research are driven by deep
learning models using neural networks. These models auto-
mate feature engineering and extract general deep features that
represent input data in a latent feature space. The extracted fea-
tures can then be used for downstream tasks, such as being con-
nected to classifiers. Learning good representations from the
data makes it easier to extract information (Bengio et al., 2013).
Many studies have shown the promising representation learning
capability of deep learning models on spatiotemporal datasets
(Wang et al., 2022), which primarily focus on understanding
of image series. There is less research about deep learning for
topographic change analysis, especially using point cloud time
series data. This paper presents the use of deep learning models
to extract comprehensive representations (i.e., deep features) in-
stead of manual feature engineering from topographic changes.

So far, research focuses on deep learning for change analysis
on urban objects (Stilla and Xu, 2023; de Gélis et al., 2023).
Insights on applying deep learning techniques to automatically
monitor topographic changes in natural environments are still
worth investigating. The performance of deep learning models
usually relies on extensive annotated training data, i.e., super-
vision. While handling point cloud time series datasets, espe-
cially acquired in natural environments (e.g., beach, mountain,
glacier, landslide), there are some apparent challenges in an-
notating the datasets: 1) the boundaries of topographic events
are not clearly defined in contrast to the distinct boundaries of

urban objects; 2) the type of changes are not all known in ad-
vance; 3) the spatial and temporal properties of different pro-
cesses are highly variable; (4) a parameter adaptation of meth-
ods is always needed for different geographic settings. There-
fore, it is important to develop unsupervised data-driven meth-
ods that require few or even no annotations to perform topo-
graphic change identification. Inspired by the deep embedded
clustering (DEC) principle that jointly optimizes deep repres-
entations learned by autoencoders and performs clustering with
latent representations (Caron et al., 2018; Xie et al., 2016), we
propose an unsupervised learning strategy to enhance the iden-
tification of topographic change processes in this paper. The
contribution of this work can be summarised as follows:

• Conversion of 4D objects-by-change (4D-OBCs) into a to-
pographic change process dataset.

• Time series-based DEC for unsupervised grouping of to-
pographic change processes.

• Derivation of geometric properties from clusters to char-
acterize topographic processes.

2. Data and Study Area

This study was conducted on a point cloud time series ac-
quired hourly by a permanent terrestrial laser scanner in-
stalled at the sandy beach of Kijkduin, The Netherlands
(52◦04′14′′N, 4◦13′10′′E) (Vos et al., 2022). The beach was
monitored during the winter of 2016 - 2017 using a Riegl VZ-
2000 laser scanner mounted on a stable frame overlooking the
beach, generating hourly point clouds with densities of 2 - 20
points/m2. The 4D point cloud time series of around six months
duration (2,942 epochs) is published in the PANGAEA data re-
pository (Vos et al., 2022). The area of interest, shown in Fig.
1, has a spatial extent of around 300 x 600 m.

Figure 1. RGB colored 3D point cloud of the sandy beach in
Kijkduin. The star marks the location of the study area. World

Borders © thematicmapping.org 2017.

The extraction of 4D-OBCs (Anders et al., 2020) from the full
dataset and all required preprocessing is detailed in Anders et
al. (2021). The resulting 4D change objects, defined by spatial
extent and timespan, depict the individual topographic change
process of the surface. Four examples are shown in Fig. 2.
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Figure 2. Different types of 4D-OBCs are shown from top to
bottom: sand accumulation, sand erosion, unknown activity, and

beach hut in the summer. Left plots show change maps of 16
epochs (subsampled) and right plots show the time series and

locations of 4D-OBCs.

In total, 2,021 4D objects were extracted from the Kijkduin
sandy beach dataset, waiting for characterization and summar-
izing. An overview of the spatiotemporal occurrence map of
4D-OBCs is shown in Fig. 3.

3. Methods

This paper proposes a three-stage method to implement topo-
graphic change process identification in an automatic, unsu-
pervised manner (Fig. 4). Firstly, a spatiotemporal segmenta-
tion method is applied to extract change objects (so-called 4D-
OBCs) from dense point cloud series (presented by Anders et
al. (2021)). From this, we build the topographic change process
dataset by selecting multiple time series from each change ob-
ject. Secondly, we use a DEC-based method to obtain clustering
centers and label assignments of time series. In the final stage,
we summarize the geometric properties of clustering results to
provide information for the characterization of the dataset. The
method was validated on a 4D dataset collected by PLS over
the Kijkduin sandy beach (Vos et al., 2022).

3.1 Topographic Change Process Dataset

As a first step, we bring the 4D objects as extracted from the 3D
time series into a data format that can be effortlessly used for
training and inference by deep neural models. Commonly used
digital media are images, text, and signals, predominantly de-
ployed in computer vision, natural language processing, and se-
quence analysis, respectively. To investigate the changes in the
topographic surface, we use time series as major representations
of change objects. All spatial locations, so-called core points,
belonging to an object, ranging from ten to tens of thousands,
have similar time series during the timespan of the change ob-
ject occurrence. Considering a balance of samples, we select
10 core points (the lowest number constituting one object in

Figure 3. Spatiotemporal occurrence map of 4D-OBCs with
occuring time as z axis, and location that along and across coast
as x and y axis. The ”positive” and ”negative” points correspond

to surface accumulation and erosion.

this dataset) from each object as representatives to contribute to
the time series dataset. In the end, a total of 20,210 data points
are present in the topographic change process dataset, which is
separated into 12,050 positive and 8,160 negative changes.

3.2 Deep Embedded Clustering

The concept of deep clustering has been proven to tackle the
problem of clustering complicated high-dimensional data in a
latent space (i.e., deep feature space) leveraging the huge suc-
cess of representation learning techniques with deep neural net-
works (Caron et al., 2018; Xie et al., 2016; Guo et al., 2017). It
typically includes two major steps: 1) learning comprehensive
representations from original data; 2) clustering data instances
in the latent vectorized space. The major objective is to jointly
optimize deep representation learning and clustering within one
iterable framework. In contrast to traditional machine learning
methods (i.e., feature engineering and clustering), deep clus-
tering not only automates the extraction of deep features from
high-dimensional data but also optimizes the clustering itself
during the learning process.

Common network structures used for representation learning
are autoencoders, generative learning networks, or contrastive
learning networks. We use a time series-based autoencoder
to implement the dimensional reduction of inputs of different
lengths into deep features of uniform low-dimensional vectors
and to initialize the weights of the model. In the clustering
learning phase, there are two common types: hard assignment
clustering (Caron et al., 2018) and soft assignment clustering
(Xie et al., 2016). Hard assignment produces discrete one-hot
cluster labels ỹi for each data point, while soft assignment gen-
erates a set of continuous cluster assignment probabilistic vec-
tors zi ∈ RK , which are the outputs of softmax activated K-
dimensional logits of deep features. For the final clustering as-
signment, the label can be obtained by selecting the dimension
with the maximum probability.

Considering our problem of clustering a set of n time series
data points {xi ∈ X}ni=1 into k clusters, we propose to use an
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Figure 4. A three-stage identification pipeline for topographic changes. A. Extracting spatiotemporal change objects from 4D point
cloud dataset. B. Implementing two phases (reconstruction and clustering) of unsupervised deep embedded clustering (DEC) by

considering time series representatives of 4D-OBCs as inputs. C. Identify the cluster of individual topographic change processes. The
first and second rows are different types of positive changes and negative changes (i.e., accumulation and erosion), respectively.

autoencoder-based architecture to extract latent representations,
i.e., embeddings {zi ∈ Z}ni=1, and cluster them into different
groups {ỹi ∈ Ỹ }ni=1. We follow the technique details in Guo
et al. (2017), which jointly optimizes the reconstruction loss
Lrec and clustering loss Lcls. The training can be split into two
phases: the pretraining phase and the clustering phase.

3.2.1 Latent Representations by Autoencoders We apply
a time series-based autoencoder to automate the feature ex-
traction process from the topographic change process data-
set. The autoencoder consists of an encoder-decoder structure,
where the encoder is implemented using three-layer convolu-
tional neural networks (CNNs), and the decoder is implemen-
ted using the mirror structure with transposed CNNs. The en-
coder fθ , where θ are learnable parameters, compresses the in-
put time series X into a lower-dimensional latent space Z. The
decoder gθ then tries to reconstruct the input from the latent
space through transposed CNNs, resulting in the reconstructed
time series X̃ = gθ(fθ(X)), as shown in Fig. 5. The train-
ing objective of the first phase is to minimize the reconstruction
loss Lrec, such as the Mean Squared Error (MSE) between the
input and reconstructed time series. This can be described as:

Lrec(θ) =
1

n

n∑
i=1

(xi − x̃i)
2 (1)

By minimizing Lrec loss, the autoencoder is guided to extract
meaningful features from the topographic change process data-
set. After the pretraining phase, the weights θ of the encoder fθ
are initialized for deep clustering, as the deep representations
Z = fθ(X) generated by the encoder will later be used as input
for the clustering phase.

Figure 5. Original and reconstructed time series.

3.2.2 Clustering and Optimizing Following the pretrain-
ing of the autoencoder, we add a soft clustering layer after
the encoder to cluster the deep representations in latent space.
We first inherit the model weights from the encoder to ex-
tract deep representations of each topographic change process
(fθ : xi → zi), and then initialize k cluster centers {µj}kj=1 in
latent space using k-means. In the clustering phase, the simil-
arity between embedded point zi and cluster µj is calculated by
Student’s t-distribution (van der Maaten and Hinton, 2008):

qij =
(1 + ∥zi − µj∥2)−1∑
j(1 + ∥zi − µj∥2)−1

(2)

where {qij ∈ Q} can be interpreted as the soft assignment
probability of data point xi to cluster µj . In order to iterat-
ively refine the clusters by learning from their high-confidence
assignments, we use an auxiliary target distribution {pij ∈ P},
same as used in Xie et al. (2016). The target distribution is:

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

(3)

where the target distribution {pij ∈ P} is actually defined by
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qij . Thus, this can be seen as a form of self-training. Specific-
ally, the target distribution can give more attention to data points
with high confidence (i.e., close to the cluster centers µj) and it
is iteratively updated based on the current soft assignments Q.
During the clustering phase, we employ the Kullback-Leibler
(KL) divergence between distributions P an Q as the clustering
loss, defined as:

Lcls = KL(P ||Q) =

n∑
i

k∑
j

pij log
pij
qij

(4)

where Lcls is the KL clustering loss. To fine-tune the encoder
fθ , we minimize a combined loss function that consists of the
reconstruction loss and the clustering loss. The final learning
objective is defined as:

L(θ) = Lrec + λLcls (5)

where Lrec is the reconstruction loss, shown as Eq. 1 (i.e.,
measured by MSE), and Lcls is the clustering loss, shown as
Eq. 4. λ > 0 is a hyperparameter that controls the degree
of distorting embedded space by clustering (Guo et al., 2017).
The clustering phase of the training process jointly optimizes
this combined loss L(θ) while continuously updating the target
distribution to guide the clustering process. Training is stopped
once the cluster assignments become stable, with insignificant
changes between consecutive iterations. Finally, pseudo-labels
ỹi can be derived for each topographic time series xi using soft-
max activation of the soft assignments: ỹi = argmaxj(qij).
The maximum probability is used to indicate the certainty of
the pseudo labels, referred to as the confidence score ϕ. The
pseudo-code of the proposed method is shown in Algorithm 1.

3.3 Experimental Settings

All experiments in this paper were conducted on a machine
equipped with an Intel® Xeon(R) w7-3455 CPU and an
NVIDIA RTX A4500 GPU with 20 GB of memory. This setup
was used for both training and evaluation of the models.

Autoencoder model: The autoencoder consists of a 3-layer 1D
CNN for the encoder and mirrored transposed CNN for the de-
coder. The encoder takes time series data as input and reduces
the dimensionality to a deep representation of size 32, while
the decoder reconstructs the original input from the deep rep-
resentations. We use MSE as the reconstruction loss function
and employ an Adam optimizer to improve training efficiency.

Deep clustering layer: A soft assignment clustering layer is
attached to the encoder to assign data points to cluster distri-
butions. The objective is to jointly minimize the reconstruction
loss and the KL clustering loss (Eq. 5). During the cluster-
ing phase, following the settings of Guo et al. (2017), we use
a Stochastic Gradient Descent optimizer to jointly optimize the
combined loss of reconstruction and clustering.

Hyperparameters: Several hyperparameters were carefully
chosen in this paper to ensure effective training and model per-
formance. The clustering loss weight is set to λ = 0.01 to bal-
ance the trade-off between reconstruction accuracy and cluster-
ing quality, ensuring that the clustering does not overly distort
the latent space. An update interval of 10 is selected to avoid
instability of the clustering layer. A learning rate of 1e-3, to-
gether with the weights decay of 1e-5, ensures smooth conver-
gence and prevents overfitting of the model. The batch size is

Algorithm 1 DEC for Topographic Processes
1: Input: Topographic Change Process Dataset: X; Number

of clusters: k; Autoencoder’s model: fθ, gθ; Pretraining
and clustering epochs: E1, E2

2: Step 1: Autoencoder’s pretraining
3: Initialize encoder fθ and decoder gθ with random weights
4: for epoch = 1 to E1 do
5: # Compress the input data into deep representations
6: Z = fθ(X)
7: # Reconstruct the input data from deep representations
8: X̃ = gθ(Z)
9: # Compute reconstruction loss by MSE

10: Lrec = MSE(X, X̃)
11: # Update model’s weights by back-propagation
12: Update fθ, gθ
13: end for
14: Step 2: Clustering and optimizing
15: # Initialize cluster centers µj by k-means
16: µj = KMeans(fθ(X), k)
17: for epoch = 1 to E2 do
18: # Compute deep representations and reconstruction
19: Z = fθ(X), X̃ = gθ(Z)
20: # Update soft assignments and target distribution
21: Update Q and P using Eq. 2 and Eq. 3
22: # Compute reconstruction loss and clustering loss
23: L = Lrec + λLcls

24: # Update model’s weights by back-propagation
25: Update fθ, gθ, µj

26: if clustering assignments become stable then
27: Early stop training.
28: end if
29: end for
30: Step 3: Pseudo label assignment
31: # Get pseudo labels from soft assignments
32: Ỹ = argmaxj(Q), ϕ = max(Q)

33: Output: Predicted pseudo-labels: Ỹ ; Confidence score: ϕ;
Trained models: fθ, gθ; Clustering centers: µj

512 to optimize computational efficiency. The data are normal-
ized from the 0th to the 95th percentile to reduce outliers and
ensure the input is between 0 and 1. The time series length was
set to 1400 time steps, which corresponds to the longest 4D ob-
jects timespan, ensuring to capture sufficient temporal patterns
of all 4D objects. The shorter time series are extended by zero
padding. Finally, the number of clusters ranges from 2 to 20
at increments of 1 to explore different clustering structures and
assess if the model can adapt to different levels of data granu-
larity. These hyperparameters are chosen based on grid search
experiments as well as best practices in deep embedded cluster-
ing and time series modeling with the goal of jointly optimizing
reconstruction and clustering performance.

4. Results

We test the proposed pipeline on 4D objects extracted from the
Kijkduin dataset of hourly PLS observations over a 6-month
period. 2,021 4D-OBCs are detected from this 3D time series,
from which we derive 20,210 topographic change time series
as input for our method. The full dataset was split into posit-
ive (n=12,050) and negative (n=8,160) changes, indicating ac-
cumulation and erosion activities, respectively. We then train
the autoencoder and deep clustering layer for each subset to
obtain the soft cluster assignments and corresponding probab-
ility distributions for each data point (i.e., time series xi). The
cluster assignment with the maximum probability is selected as
the pseudo label ỹi, and the probability can be considered as
the level of confidence that the data point belongs to the target
group. Thus, we call the maximum probability as the confid-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-929-2025 | © Author(s) 2025. CC BY 4.0 License.

 
933



ence score ϕ. The clusters and confidence scores can provide us
with patterns of time series to help us characterize topographic
change processes.

We implement deep clustering with k values from 2 to 20 and
use the silhouette score to assess the clustering performance
(Rousseeuw, 1987). The silhouette score is an internal metric
that measures how similar a data point is to its cluster assign-
ment compared to other clusters, between -1 and 1, with higher
values indicating better clustering performance.

Figure 6. The clustering results of k = 2 and k = 4. The first
column is the cluster-wise mean and standard deviation, and the

other five columns are time series closest to cluster centers.

Clustering interpretation: We show the clustering results of
positive changes (i.e., accumulation activity) with k = 2 and
k = 4 in Fig. 6 and the clustering results of both positive
and negative changes with k = 9 in Fig. 7 (which is the
highest k while maintaining silhouette scores higher than 0.5).
From the clustering results, we observe several interesting as-
pects. First, the binary clustering categorizes the time series
into small-magnitude (first row) and large-magnitude (second
row) changes. When increasing k, new distinct patterns appear,
such as the third and fourth row of the quad-cluster (Fig. 6),
reflected in the duration of the changes. This also demonstrates
the ability of CNN-based models to extract localized features
from active data periods. Second, although increasing k enables
mining more varied patterns of change, this behavior does not
persist with infinite growth. When k is increased to a certain
level, different clusters emerge with apparent similarities. For
instance, C3 and C5 of positive changes in Fig. 7 both show
a pattern of gradual starting and sudden ending. Most import-
antly, during the clustering training phase, the clustering layer
constantly keeps similar data points close and different points
far away in latent space, which ensures consistency within every
single category and heterogeneity between different categories
to some extent. As shown in Fig. 7, the time series in each
row presents a very high degree of similarity, whereas the time
series in each column presents differences in some aspects, such

Positive Negative
K duration (h) magnitude (m) shape duration (h) magnitude (m) shape

mean (±std) mean (±std) mean (±std) mean (±std)
K1 458 (± 187) 0.56 (± 0.24) GG 388 (± 140) 0.53 (± 0.21) GG
K2 329 (± 258) 0.37 (± 0.24) SG 229 (± 186) 0.51 (± 0.24) SG
K3 669 (± 93) 0.98 (± 0.07) GS 480 (± 132) 0.93 (± 0.11) SS
K4 344 (± 127) 0.97 (± 0.08) SS 635 (± 114) 0.99 (± 0.05) SS
K5 495 (± 145) 0.97 (± 0.07) GS 919 (± 131) 0.54 (± 0.23) GG
K6 875 (± 120) 0.95 (± 0.10) GS 673 (± 190) 0.43 (± 0.18) GG
K7 222 (± 145) 0.91 (± 0.15) SS 1042 (± 62) 0.99 (± 0.02) GS
K8 735 (± 211) 0.43 (± 0.22) GG 823 (± 103) 0.99 (± 0.04) GS
K9 1136 (± 96) 0.99 (± 0.27) SS 253 (± 134) 0.95 (± 0.11) SS

Table 1. Characteristics of clusters.

as active duration, shape, and magnitude.

Characterization of change objects: To provide information
for the characterization and classification of 4D objects, we
summarize spatiotemporal properties of each cluster shown in
Fig. 7 in Table 1. Duration refers to the timespan of the change
objects. Magnitude represents the peak value of the change, and
the numbers shown are normalized by the max-min normaliza-
tion. Each time series is then clipped into two phases (i.e., the
beginning and the end of the change) based on its peak, with
G representing a gradual change and S representing a sudden
change. The combination of letters represents the shape of to-
pographic change processes. The properties exhibited in our
results show clear differences across clusters, providing valu-
able characteristics for describing the change objects.

5. Discussion

The proposed DEC method for topographic change processes
demonstrates notable performance in automatically grouping
topographic processes into distinct clusters. This is a good
indication that data-driven self-supervised learning shows the
potential to provide meaningful features and reduce traditional
feature engineering. The autoencoder effectively extracts deep
representations from the inputs. It furthermore exhibits denois-
ing capabilities that keep the significant change information,
such as trend, shape, and volume of the change (Fig. 5). The
clustering layer assigns pseudo labels depending on the distance
between each data point and the cluster centers in the latent
space. The final clustering results demonstrate evident intra-
cluster similarity and inter-cluster variability.

Compared to traditional machine learning methods used for
topographic change process characterization, e.g., raw time
series clustering (Kuschnerus et al., 2021) or SOMs (Hul-
skemper et al., 2022), our DEC-based approach has several
strengths. First, it eliminates the manual feature engineering,
allowing the model to automatically learn features from raw
data without compression. This preserves the full temporal in-
formation and increases the inference efficiency. Second, the
clusters produced by our model reflect variability in the spa-
tial and temporal properties of the topographic change process,
enabling the capture of unknown patterns. Third, the confid-
ence scores of each data point provide us with information on
how certain a data point belongs to its cluster. In contrast,
data with a low confidence score shows the uncertainty or am-
biguity of changes. More potential remains to explore self-
supervised learning methods for topographic change analysis
and the model’s transferability across different datasets.

A key limitation of our approach is the lack of prior know-
ledge about the number of clusters, which requires us to per-
form a grid search of an appropriate confidence threshold and
to use silhouette scores to determine the optimal number of
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Figure 7. The clustering results of k = 9. C1 to C9 are cluster id, P0 and N0 are the cluster-wise mean and standard deviation, and P0

to P5 and N0 to N5 are top 5 time series of each cluster. P and N mean positive and negative, respectively.

clusters (k). While this approach successfully identified mean-
ingful clusters, it requires more non-parametric computation
(e.g., density-based clustering) and transferability to new data-
sets that need investigation. However, the approach can provide
valuable information for understanding whether new inputs be-
long to existing clusters, helping in real-time classification of
topographic change processes. Another limitation could be that
we select the spatially closest points of interest for the input
dataset, but we do not incorporate spatial features into model
training. We are investigating incorporating handcrafted spatial
features of 4D objects as auxiliary features in the training (e.g.,
size, height, width, and volume of change objects), but so far,
this has not notably improved the clustering results. The next
phase will focus on taking the spatial dependencies between
points or 4D objects into account. Additionally, the CNN mod-
ule requires fixed-length inputs, for which we use zero padding.
This achieves evident results due to CNN’s ability to focus on
localized features, but it is less effective for handling variable-
length time series data. A more dynamic module, such as a re-
current or transformer-based neural network that could process
varying input shapes, should be further investigated.

Future research could focus on explicitly incorporating spatial
information into the training process, which would likely en-
hance the model’s ability to capture geospatial dependencies of
topographic processes. Integrating multi-modal data sources,
such as environmental sensor data and optical imagery, could
provide a more comprehensive understanding of topographic

dynamics also to a deep clustering model. Furthermore, we may
convert our clustering results into preliminary semantic labels
to accelerate the annotation process of topographic changes, po-
tentially by leveraging semi-supervised learning to support the
community in deep learning with topographic change analysis.

6. Conclusion

This study develops a deep embedded clustering (DEC) ap-
proach for the characterization of topographic change pro-
cesses, focusing on automatically clustering and identifying
distinct patterns of 4D objects that are automatically extrac-
ted from time series of 3D point clouds. The results show
that our approach effectively clusters topographic change pro-
cesses into notable clusters without requiring any annotations
or manual feature engineering. The identified clusters show
evident intra-cluster similarity and reflect the inter-cluster vari-
ability in meaningful properties, such as duration, magnitude
and shape, which provide discrepancy characteristics of topo-
graphic change processes. Our approach offers several advant-
ages, including eliminating manual feature engineering, pre-
serving the full temporal information, and providing confidence
scores for cluster assignments. However, limitations remain,
such as the determination of cluster numbers requiring hyper-
parameter tuning and the need for fixed-length time series as
input. In future research, we will explore explicitly incorpor-
ating spatial features and improving the automation of hyper-
parameter tuning. With this, our research presents the first step
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towards using deep learning to empower automated character-
ization and annotation of topographic change processes. Over-
all, this study highlights the potential of deep learning-based
methods to advance the understanding of complex topographic
changes and improve automation in geoscience applications.
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