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Abstract

Semantic segmentation of shield tunnel point clouds provides valuable information for checking assembly quality, deformation,
or defects. To achieve efficient semantic segmentation of shield tunnel point clouds, Tunnel-NN, a training-free non-parametric
network is proposed. Tunnel-NN is evaluated using a dataset of five point clouds of shield tunnel rings and compared to two
common baselines, namely PointNet and PointNet++, demonstrating comparable performance. To further enhance its performance
in large-scale point cloud applications, a sector splitter sampling method is introduced based on tunnel section geometry. This
approach preserves local geometric features while reducing the size of input data. Test results indicate that the sector splitter
significantly improves the segmentation accuracy of Tunnel-NN and also benefits PointNet and PointNet++. Compared to trainable
deep learning algorithms, Tunnel-NN achieves similar performance on datasets with few training examples without the need for
training, highlighting its potential for broad engineering applications.

1. Introduction

The underground railway system has become a vital compon-
ent of urban transportation, owing its utility to ensure extens-
ive connectivity and interaction within the region, thus facilitat-
ing population growth and significantly contributing to regional
economic development and social prosperity (Mejia-Dorantes
et al., 2012, Peng et al., 2019). Currently, the shield tunneling
method is widely employed in subway tunnel construction due
to its high efficiency and minimal disruption. The lining struc-
ture of a shield tunnel consists of precast reinforced concrete
segments, with joints between adjacent segments connected by
bolts or other mechanisms, as illustrated in Figure 1. Despite
the advantages in construction efficiency, offsets and openings
at these joints are common during the assembly process (Zhu
et al., 2014, Zhao et al., 2023, Li et al., 2024a). Over time,
joint deformation can progressively worsen during tunnel op-
eration and maintenance, leading to segment cracking, water
seepage at the joints, and peeling of segment corners. These
issues not only increase safety risks but also degrade long-term
service performance and raise maintenance costs, thereby neg-
atively impacting metro operations (Attard et al., 2018). Con-
sequently, timely and effective inspections are critical to ensur-
ing high assembly quality during construction and maintaining
safety throughout the tunnel’s operational lifespan.

Figure 1. Shield tunnel lining structure and its components

In the context of tunnel surveys, on-site visual inspection plays
an important role. While this method leverages substantial
knowledge and extensive experience to achieve reasonably ac-
curate results, it is often time-consuming and inefficient. For
instance, an inspector may only cover a few kilometers per day
(Li et al., 2021, Zhang et al., 2022). Additionally, this approach
is generally conducted in harsh environments and requires sig-
nificant physical effort, making it unsuitable for large-scale tun-
nel surveys. The presence of active metro operations within tun-
nels further compromises inspector safety, and prolonged metro
shutdowns for survey purposes can disrupt regional daily life.
These challenges in tunnel construction and maintenance are
common across the globe.

To address these limitations, recent research efforts have ex-
plored the utility of surveying methods including total stations,
terrestrial laser scanning, as well as specialized mobile laser
scanning equipment to acquire tunnel point clouds. Compared
to traditional on-site visual surveys and image-based methods,
point clouds offer several advantages, such as precise geomet-
ric representation of target objects, rapid data acquisition, and
lower operational costs. Furthermore, they enable accurate re-
construction and detection of objects through detailed descrip-
tions of 3D geometry and additional point attributes like intens-
ity, RGB color, and normal vectors (Zhang et al., 2019). Con-
sequently, 3D point clouds are highly suitable for use as the
primary data in tunnel inspection. However, the complex tun-
nel environment, with various objects supporting tunnel con-
struction or metro operation, such as power cables, tracks and
pipes, often produces numerous interfering artefacts in the point
cloud, which can adversely affect the inspection of tunnel lin-
ing structures (Lin et al., 2024, Ji et al., 2023, Soilán et al.,
2020, Li et al., 2023). Therefore, accurate semantic segmenta-
tion of complex tunnel point clouds is very important for check-
ing the assembly quality, deformation, or defects. While deep
learning approaches to semantic segmentation of point clouds
have achieved remarkable success in various applications, the
application of these methods to point clouds of shield tunnels is
challenged by the scarcity of training examples for the various
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objects present in the data.

Building upon recent advancements in point cloud segment-
ation, we propose a training-free non-parametric network ar-
chitecture, Tunnel-NN, specifically designed for semantic seg-
mentation of shield tunnel point clouds. To evaluate the per-
formance of Tunnel-NN, its segmentation results are compared
with those of PointNet and PointNet++ using a dataset of five
point clouds of shield tunnel rings. The results demonstrate
that Tunnel-NN achieves an accuracy comparable to the afore-
mentioned learning-based methods. In addition, to enhance the
applicability of the network model to large-scale point clouds,
such as a single-ring of a tunnel containing millions of points,
we propose a sector splitter sampling method based on the geo-
metric characteristics of the tunnel. This approach preserves the
local geometric features of the point cloud while reducing the
input scale, thereby achieving a balance between computational
resource consumption and efficiency. The test results demon-
strate that the sector splitter sampling not only significantly en-
hances the segmentation performance of Tunnel-NN but also
yields comparable improvements on PointNet and PointNet++.
Compared to widely used machine learning algorithms, tunnel-
NN demonstrates superior performance on small sample data-
sets without the need for training, highlighting its potential for
broad applicability in engineering.

The structure of this paper is as follows: Section 2 provides an
overview of existing semantic segmentation methods for shield
tunnel point clouds. In Section 3, we present a detailed explan-
ation of our proposed framework, Tunnel-NN, along with the
sector splitter sampling method. Section 4 reports the experi-
mental results on a dataset we collected. Finally, Section 5 dis-
cusses the findings and outlines potential directions for future
research.

2. Related Work

2.1 Semantic Segmentation of Tunnel Point Cloud

To date, segmentation methods for tunnel point clouds can be
broadly classified into two main categories.

The first category involves the direct extraction of features from
tunnel point clouds using rigorous mathematical theories or
fundamental machine learning algorithms. These features are
subsequently utilized for clustering, classification, or segment-
ation to isolate the point clouds associated with the lining struc-
tures.

For instance, early research primarily focused on fundamental
point cloud features, such as point density, relative distances,
and angles, to identify joints and segments in tunnel linings (Xu
et al., 2019, Cheng et al., 2019). Building upon this found-
ation, numerous studies introduced clustering and segmenta-
tion techniques on tunnel point clouds using foundational point
cloud feature analysis algorithms, including density-based spa-
tial clustering of applications with noise (DBSCAN) (Li et
al., 2022), principal component analysis (PCA) (Lamas et al.,
2021), and k-nearest neighbors (KNN) (Wang et al., 2022). The
cross-sectional design of most shield tunnels is typically circu-
lar. As a result, during the construction and operation stages,
circular or cylindrical fitting methods can be employed to ef-
ficiently extract the lining surface point cloud while filtering
out irrelevant internal point clouds, such as those from cables
or pipes (Yi et al., 2020, Zhao et al., 2024, Duan et al., 2021).

Furthermore, some studies have accounted for the inevitable de-
formation that occurs during tunnel construction or service life
by utilizing elliptical or elliptical cylindrical fitting techniques,
which more accurately reflect the actual cross-sectional shape
(Xie and Lu, 2017, Zhang et al., 2024a, Wang et al., 2017).

Although these algorithms have demonstrated remarkable per-
formance in relatively simple conditions, their effectiveness
tends to diminish when applied to more complex and unstruc-
tured tunnel scenarios, where the variability of point cloud qual-
ity and noise presents significant challenges. To address these
limitations, recent studies have integrated deep learning into
tunnel point cloud segmentation, with the goal of improving the
accuracy and effectiveness of semantic segmentation in large-
scale and complex scenarios, thus forming a second category of
methods.

Given the maturity of image semantic segmentation techniques,
some studies have proposed transforming the collected 3D tun-
nel point cloud data into a 2D representation by unfolding the
cylindrical surface, creating a 2D image (Cui et al., 2024b,
Zhang et al., 2023b). This approach allows the use of well-
established models, such as U-Net (Cui et al., 2024a) and
Segment Anything Model(SAM) (Kang et al., 2024) for se-
mantic segmentation of the point cloud. By leveraging these ad-
vanced image-based techniques, researchers aim to achieve ef-
ficient and accurate segmentation of tunnel lining point clouds,
bridging the gap between 3D data processing and mature 2D
segmentation technologies (Li et al., 2024b, Duan et al., 2021).

Since 2D images compress depth information, these methods
may face limitations in accurately capturing the edges of 3D
objects and handling overlapping point clouds. Additionally,
the complexity of point cloud projection and reprojection can
impact the overall efficiency of semantic segmentation. Con-
sequently, deep learning models that operate directly on 3D
point clouds continue to hold an indispensable role in achiev-
ing more precise and efficient segmentation outcomes (Zhang
et al., 2022). In addition to applying advanced 3D point cloud
segmentation models like PointNet and PointNet++ (Lin et al.,
2024, Soilán et al., 2020), several studies have developed more
powerful networks by incorporating techniques such as atten-
tion mechanisms (Zhou et al., 2023) and local feature enhance-
ment (Li et al., 2023), further improving segmentation perform-
ance.

However, in engineering practice, the high computational cost
of training complex semantic segmentation networks, along
with the labour-intensive process of point cloud data labeling
required for training, remain key barriers to widespread adop-
tion of deep learning methods for semantic segmentation of
shield tunnel point clouds (Ji et al., 2023, Ji et al., 2022, La-
mas et al., 2021). These challenges motivate our proposal for a
training-free semantic segmentation network.

2.2 Training-free Network for Point Clouds

As the number of learnable parameters in a typical segmenta-
tion model increases, the computational resources required for
training and inference grow accordingly. The concept of a non-
parametric network for 3D point clouds was first introduced
with PointNN (Zhang et al., 2023a). This approach explores
a different perspective on 3D point cloud processing, aiming to
achieve efficient classification by designing a network that op-
erates without learnable parameters. PointNN classifies a query
point cloud by measuring the similarity between the encodings
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of the query point cloud and those of one or more support point
clouds processed through the same network structure. Recently,
the application of these networks has been expanded to point
cloud semantic segmentation (Zhu et al., 2024).

Building on this approach, researchers have extended the ap-
plication of non-parametric networksto a variety of point cloud
recognition tasks, including pole-like object detection (Zhang
et al., 2024b), driving scene perception for autonomous driv-
ing systems (Gu et al., 2024), and other applications (Bao et
al., 2024, Cheng et al., 2024). This demonstrates the potential
of training-free networks for broader use in complex 3D point
cloud data analysis.

3. Methodology

3.1 Tunnel-NN

Our proposed Tunnel-NN is primarily inspired by a study that
extended non-parametric networks to the task of point cloud
semantic segmentation (Zhu et al., 2024). The architecture of
the proposed Tunnel-NN is shown in Figure 2.

As illustrated in Figure 2, the network processes both the query
point cloud, which requires semantic segmentation, and the
support point cloud, a labeled sample. The detailed processing
steps are outlined as follows.

For each point cloud containing M points of N classes,
{pi}Mi=1, input into the network, an initial embedding module
is employed to encode the spatial position, p = (x, y, z), and
RGB color, c = (r, g, b), of each point, as detailed below:


E(p;u) = [sin(2πup), cos(2πup)] ∈ R6d;

E(c;u) = [sin(2πuc), cos(2πuc)] ∈ R6d,

f0 = E(p;u) + E(c;u) ∈ R6d,

(1)

where u = [u1, . . . , ud] is a list that contains d frequencies,
E(·) stands for the embedding, 6d represents the combination
of 3 coordinates or color channels with 2 functions, sin(·) and
cos(·). f0 is the output of initial embedding module. Using
Eq. (1), the spatial and color information of each point is trans-
formed into a high-dimensional space through a range of differ-
ent frequency mappings.

After that, in each encoding unit, the input point cloud is
first downsampled using farthest point sampling (FPS), with a
sampling ratio of 0.5. The point cloud is reduced to half its pre-
vious size after each sampling operation. For each discarded
point, a KNN search is conducted with the point as the center,
and all neighboring points are denoted as Np. Then, for the
retained points, which are identified as neighboring points, the
features of the center point are concatenated to these neighbor-
ing points along the channel dimension as follows:

f̂ l
j = Concat(f l−1, f l−1

j ), j ∈ Np, (2)

where j represents the j-th point in the neighborhood Np, and l
denotes the l-th encoder unit as in Figure 2. In this manner, the
characteristics of the discarded points are still preserved. The
dimension of f̂ l

j is increased to 2l × 6d as Eq. (2) is applied at

each manipulation layer, with each layer doubling the channel
dimension.

Then, for the j-th point retained, its feature is manipulated ac-
cording to the following:

f l
j = W l · (f̂ l

j + E(∆pj ;u) + E(cj ;u))R2l×6d, (3)

where W l = [cos(2π)vk] ∈ R2l×6d is the manipulation
weight, v represents a series distributions of sample frequen-
cies, such as Gaussian, uniform, Laplace, and etc, k =
[1, ..., 2l×6d], and ∆pj ;u stands for the position offset between
j-th point and the center point when applying KNN. By apply-
ing Eq. (3), the local features of the point cloud are progress-
ively enhanced.

In the decoding stage, each decoder unit performs two key func-
tions. The first is to restore the downsampled points from the
corresponding encoder unit, which means doubling the number
of points at each step. The features for these upsampled points
are derived through linear interpolation from the points retained
in Eq. (2) and Eq. (3). The second function is to concatenate
the upsampled features with the features from the point cloud
at the same scale, effectively combining information from mul-
tiple layers to enhance the final representation.

The output from the final decoder unit has a feature shape
of [M, 90d], where M represents the number of points and
90d corresponds to the dimensionality of the feature space.
This output encapsulates the aggregated and upsampled fea-
tures from the preceding layers. Finally, the feature arrays of
the query point cloud and support point cloud are compared by
calculating the similarity to determine the label for each point
in the query point cloud, as follows:

{
φ(x) = exp(−γ(1− x)),

logits = φ(FQF
⊤
P LP ) ∈ RM×N ,

(4)

where φ(x) represents the activation function and γ denotes
the scaling factor. FQ refers to the output feature from the
last decoder unit for query point cloud, while FP represents
the masked average pooling feature of support point cloud,
with FP containing N rows corresponding to N classes. And
LP ∈ RN×N stands for the one-hot labels arrays of N classes.

3.2 Sector Splitter Sampling

The proposed sector splitter sampling method is illustrated in
Figure 3. For the point cloud of a single ring, the RANSAC
cylindrical fitting is applied to extract the cross-sectional center
and determine the tunnel axis direction, which is represented
as the z-axis in Figure 3. As the data in this study is collected
using a self-developed simultaneous localization and mapping
(SLAM) equipment, the gravity direction (y-axis in Figure 3) is
not inherently provided. To address this, we start by performing
a coarse manual segmentation of the track point cloud. PCA is
then applied to this subset of points to determine the principal
components, with the direction perpendicular to the plane of the
track serving as the estimated y-axis, as this direction consist-
ently aligns with gravity.

The x-axis direction is determined by calculating the cross
product of the y-axis and z-axis directions. Subsequently, the
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Figure 2. Architecture of Tunnel-NN

Figure 3. The sector splitter sampling process

point cloud is translated and rotated based on the center co-
ordinates of the cross-section and the x, y, and z axes, to be
projected onto the x-y plane. This process ensures that, after
projecting each ring of point cloud, the internal components
such as the pipes, cables, and tracks are consistently aligned
in approximately the same positions across projections.

Next, given a specified angle of view, the first sector is defined
with the y-axis as the starting reference. All the points within
this sector, which are located within the defined angle of view,
are extracted to form a distinct partition of the data referred to as
a sector. The angle of view is then rotated incrementally without
overlapping, ensuring that the entire point cloud is divided into
multiple sectors without any omissions. This approach ensures
that all sectors maintain the point density of the original point
cloud, and have an approximately equal size, thus preserving
the original local details.

4. Case Study

The data used in this study was collected using a self-developed
SLAM equipment in a tunnel under construction in Shenzhen,
China. As the original point cloud data only includes co-
ordinate and intensity information, the intensity values were
mapped onto a red-white-blue color scale, thereby generating
RGB color for the point cloud, as illustrated in Figure 4(a).

The point cloud data contains a total of eight semantic cat-
egories, including segment surfaces, bolt holes, grouting holes,
joints, paths, pipes, tracks, and power cables. The annot-
ated point cloud data is displayed in Figure 4(b), with each
class represented by a different color. Of these categories, the

first four—segment surfaces, bolt holes, grouting holes, and
joints—are critical for tunnel deformation analysis.

The annotated point clouds of two rings in the dataset are util-
ized either as training data for trainable networks or as support
data for Tunnel-NN. Point clouds of the other three rings are
used to evaluate the performance of the network. The details of
the dataset are provided in Table 1. Notably, when using sec-
tor splitter sampling, a viewing angle of 10° is applied, with
the original 36 samples containing an average of 24,485 points
each. Given the input shape limit of 12,288 points, these 36
samples are downsampled by a factor of 0.5 to meet the limit,
while doubling the sample count to 72.

Table 1. Dataset details and specifications

Type No. Number of points
Number of samples

Sector splitter
sampling

Random
sampling

Training
or Support

S1 878,206 72 71
S2 970,931 72 79

Evaluation
or Qeury

Q1 797,415 72 65
Q2 825,322 72 67
Q3 935,465 72 76

To evaluate the performance of Tunnel-NN in comparison
with trainable models, two point cloud segmentation networks,
namely PointNet and PointNet++, which are commonly used in
existing research (Lin et al., 2024, Soilán et al., 2020), are selec-
ted as baselines. To assess the effect of sector splitter sampling
on model performance, two experimental groups, Group A and
Group B, are established. In Group A, all models use the default
random downsampling method for dataset preparation, while

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-945-2025 | © Author(s) 2025. CC BY 4.0 License.

 
948



(a) RGB point cloud

(b) labeled point cloud

Figure 4. The collected point cloud of shield tunnel

in Group B, the dataset is prepared using the sector splitter
sampling method. The input for all network models in both
Group A and Group B is limited to 12,288 points, which is
the maximum capacity supported by our GPU during the most
computationally intensive training phases of our experiments.
Training and inference are conducted on an NVIDIA L40 GPU
with 48GB of vRAM, and for the trainable models, the number
of epochs is set to 500. Three metrics are employed to evalu-
ate model performance: Intersection over Union (IoU) for each
class, mean IoU (mIoU) averaged across all classes, and overall
accuracy, as detailed below:

IoUi =
TPi

TPi + FPi + FNi
, (5)

mIoU =
1

N

N∑
i=1

IoUi, (6)

Accuracy =

∑N
i=1 TPi∑N

i=1(TPi + FPi)
, , (7)

where TPi represents the number of points that are correctly
predicted as class i, FPi denotes the number of points that are
incorrectly predicted as class i, and FNi is the number of points
that belong to class i but are predicted as other classes. The
visualized segmentation results of Group A and B are illustrated
in Figure 5 and Figure 6. The quantitative results are detailed
in Table 2, with the best results highlighted in bold.

Comparing Figure 5 and Figure 6, we observe that when the

models employ random sampling, the segmentation perform-
ance for small-sized features such as bolt holes, grouting holes,
joints, and power cables is suboptimal. However, using sector
splitter sampling significantly enhances the ability of the mod-
els to semantically segment these small-sized features. This
improvement is further supported by the IoU results in Table
2. For instance, compared to using random sampling, apply-
ing sector splitter sampling to Tunnel-NN increases the IoU
by 31.9%, 36.2%, 24.6%, and 20.5% for the aforementioned
small-sized features, respectively. Additionally, sector splitter
sampling yields an improvement of 17.2%, 16.9%, and 16.6%
in the mIoU of PointNet, PointNet++, and TunnelNN, respect-
ively.

In the experimental group employing sector splitter sampling,
Tunnel-NN achieves an mIoU that surpasses PointNet by 7.6%,
though it is 4.5% lower than PointNet++. Tunnel-NN achieved
the highest IoU for tracks across all experiments, as well as
the highest IoUs for path and pipes in Group B, demonstrat-
ing its superior performance in these specific tasks. These res-
ults indicate that Tunnel-NN’s overall performance is compar-
able to that of trainable models. An important observation is
that while PointNet and PointNet++ required 1.7 hours and 5.2
hours of training time, respectively, Tunnel-NN achieved sim-
ilar levels of semantic segmentation accuracy without the need
for any training. This highlights the efficiency of Tunnel-NN
as a non-trainable approach, offering competitive results while
significantly reducing computational cost and time.

5. Discussion

To compare the point clouds generated by random sampling and
sector splitter sampling, the point cloud data obtained from both
methods from the same perspective is visualized in Figure 7. In
the case of random sampling, the sampled point cloud is uni-
formly and sparsely distributed across the entire ring, with an
average point spacing of 2.647 cm. By contrast, under the same
number of samples, the point cloud generated by sector splitter
sampling is more densely distributed within a specific sector,
resulting in a much finer average point spacing of 0.838 cm.

This difference in point density highlights that sector splitter
sampling preserves local geometric details of the tunnel point
cloud, such as bolt holes and joints in Figure 7, which are nearly
absent in the point cloud obtained through random sampling.
Consequently, sector splitter sampling effectively enhances the
IoU performance across various semantic segmentation models
by retaining these critical features.

In our experiments, a single input of 12,288 points repres-
ents the maximum capacity supported by our GPU with 48GB
of vRAM during the most computationally intensive training
phases, exceeding the capacity of most current desktop GPUs.
As the number of input point clouds increases, the additional
vRAM required grows proportionally. Therefore, sector splitter
sampling can enhance the model’s performance when computa-
tional resources are limited, which in turn facilitates its broader
application to tunnel point cloud datasets.

While Tunnel-NN, when combined with sector splitter
sampling, achieves performance comparable to that of Point-
Net++ without the need for training, there remains potential
for further improvement in its semantic segmentation IoU. Fu-
ture research could explore strategies to enhance its perform-
ance, such as optimizing the network architecture or adjusting
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Figure 5. Visualized segmentation results of Group A: models with random sampling

Figure 6. Visualized segmentation results of Group B: models with sector splitter sampling
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Table 2. Quantitative performance comparison of different networks (%)

Group Method Training time (h)
IoU per Class

mIoU
Overall

accuracySgement
surface

Bolt
holes

Grouting
holes

Joint Path Pipes Tracks
Power
cables

A
PointNet 1.7 84.6 13.0 1.7 17.0 65.9 84.9 55.6 45.2 46.0 83.6

PoinNet++ 5.2 88.0 23.0 8.1 8.4 98.7 94.9 94.7 51.3 58.4 88.2
Tunnel-NN 0 86.2 28.3 7.6 9.2 84.5 85.9 86.7 45.0 54.2 87.1

B
PointNet 1.7 90.4 44.6 15.1 32.4 81.2 90.4 95.2 56.1 63.2 91.1

PoinNet++ 5.2 93.9 71.9 62.5 52.1 75.9 78.7 93.3 74.2 75.3 94.3
Tunnel-NN 0 89.9 60.2 43.8 33.8 83.8 94.4 95.2 65.3 70.8 91.1

Figure 7. Comparison of point cloud density between random
sampling and sector splitter sampling: (a) random sampling, (b)

sector splitter sampling

key parameters. Investigating these avenues may provide valu-
able insights into how Tunnel-NN can be refined to deliver even
more accurate segmentation results, making it a promising area
for continued study.

6. Conclusion

This study presents Tunnel-NN, a training-free semantic seg-
mentation network specifically designed for few-shot shield
tunnel point clouds. Our experimental results demonstrate that
Tunnel-NN can achieve competitive performance compared to
PointNet and PointNet++ on a few-shot dataset while avoid-
ing the need for training. The introduction of the sector splitter
sampling method further enhances segmentation accuracy by
preserving important local geometric details, such as bolt holes
and joints, which are often missed in random sampling meth-
ods. Tunnel-NN’s ability to achieve performance comparable
to trainable models without the need for training positions it as
a promising tool for large-scale engineering applications.
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