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Abstract

Estimating 3D deformation with high spatial resolution from TLS point clouds is beneficial for geomonitoring. Existing methods
for this task primarily rely on geometric data. They do not use radiometric information although it is often available as well. This
leaves potential for improvement. To address this, we propose an approach that utilizes RGB images—captured by built-in cam-
eras of TLS scanners and co-registered with TLS point clouds—to generate dense 3D displacement vector fields for deformation
analysis. Our method comprises three main steps: (1) applying the Efficient-LoFTR algorithm to establish dense 2D pixel corres-
pondences on RGB images across two epochs; (2) projecting 3D points from both epochs onto RGB images and establishing 3D
point correspondences by matching the projected pixels with the established 2D correspondences; (3) clustering the point cloud
of one epoch and refining the 3D point correspondences within each cluster to produce the final displacement vector fields. Ex-
periments on real measurements obtained from a rockfall simulator and from a real-world landslide demonstrate that our method
achieves comparable accuracy to state-of-the-art geometry-based methods, with improved density and computational efficiency.
By using radiometric features, our approach complements geometry-based methods, suggesting that combining both will enhance
coverage and/or accuracy for geomonitoring applications.

1. Introduction

In geomonitoring applications, estimating 3D deformation can
enhance our understanding of Earth’s physical processes, po-
tentially contributing to reducing risks associated with geolo-
gical hazards such as landslides, rockfalls, and debris flows (Ja-
boyedoff et al., 2012; Mukupa et al., 2017; Albanwan et al.,
2024). One way to generate such 3D data is through the pro-
cessing 3D point clouds acquired via LiDAR scanners or pho-
togrammetry. Among LiDAR-based sensor systems, terrestrial
laser scanning (TLS) scanners have become a promising tool in
geomonitoring, favored for their high measurement quality and
spatio-temporal resolution.

To obtain dense displacement maps or 3D models of deforma-
tion, TLS point clouds from at least two measurement epochs
undergo a typical data processing chain, including data prepro-
cessing (e.g., outlier removal and point cloud registration), per
point (or per group of points) correspondence establishment,
and estimation of displacements between these corresponding
points. All three steps affect the information content and quality
of the estimated displacements. However, in this study we focus
on the latter stages: establishing correspondences and estimat-
ing displacements, often performed within a single algorithm.

Common approaches, such as C2C (Girardeau-Montaut et al.,
2005), C2M (Cignoni et al., 1998) and traditional M3C2 (Lague
et al., 2013), establish point-to-(point; approximated surface;
averaged points) correspondences based on computing dis-
tances in Euclidean space, often directed along local sur-
face normals, and provide per-point signed or unsigned dis-
placement magnitudes (Euclidean distances between matches).
While effective in many applications, these methods have not-
able limitations. Namely, establishing correspondences directly
in Euclidean space results in incorrect matches when displace-
ments occur along the surface of the sampled terrain, a com-

mon case in geomonitoring. Additionally, the “directed” nature
of establishing correspondences makes these methods sensitive
only to displacements in predefined directions. Hence, these
approaches inevitably capture only a projection of the full 3D
displacement, resulting in underestimation or omission of sig-
nificant displacements. Even some state-of-the-art M3C2 vari-
ants (James et al., 2017; Zahs et al., 2022; Yang and Schwieger,
2023) do not fully resolve these issues, as they primarily focus
on refining the quality, e.g., by local patch or plane-based filter-
ing, rather than addressing the limitations in dense 3D displace-
ment estimation. Consequently, these methods offer insight into
the distribution of 1D displacements within 3D space but fail to
capture the full extent of 3D displacement fields.

To address these challenges, alternative approaches emerged,
capable of providing 3D displacement vector fields (DVFs).
Some of these approaches entail “Piecewise ICP” and related
alternatives (Teza et al., 2007; Friedli and Wieser, 2016; Wujanz
et al., 2018), which partition point clouds into tiles and estimate
per-tile displacements as translation vectors obtained through
the ICP algorithm (Besl and McKay, 1992; Chen and Medioni,
1992; Bergevin et al., 1996) or some of its variants. In this
case, the per-tile correspondences are also established directly
in the Euclidean space. Despite being effective solutions for
some cases, this class of algorithms usually generates sparser
3D DVFs (per tile and not per point) and produces biased es-
timates if per-tile rigid body motion is violated.

Some approaches use image representations of the acquired
point clouds, establishing correspondences in 2D image space.
These methods, often based on hillshade representations of ter-
rain geometry and techniques like image correlation, optical
flow or feature tracking (Fey et al., 2015; Holst et al., 2021;
Teo et al., 2023), are more effective when motion occurs along
terrain surfaces. However, they also result in sparse DVFs
due to the algorithms used. Additionally, multi-directional
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Figure 1. Method overview. (1) Source and target images, corresponding to point clouds before and after the deformation epoch, are
tiled into L sub-images. A deep learning-based algorithm is used to perform image matching between source and target sub-images,
generating 2D pixel correspondences. (2) Source and target point clouds are projected onto their respective images. For each projected
pixel from the source point, its closest 2D pixel correspondence is found via NN matching. This pixel correspondence is used to find the
projected pixel from the target point via NN matching. The projected source and target pixels are lifted back to 3D space to establish 3D
point correspondences. (3) The source point cloud is clustered into small patches using a deep learning-based segmentation algorithm.
Within each patch, point correspondences are used to estimate an initial rigid transformation, followed by a refined estimation of the
transformation. This refined transformation is then applied to all matched source points within the patch.

M3C2 (Williams et al., 2021), a variant of M3C2, adaptively
selects the direction of meaningful estimations. In contrast,
F2S3 (Gojcic et al., 2020) estimates 3D DVFs by establishing
per-point correspondences using deep learning based 3D point
feature descriptors, followed by deep learning-based outlier re-
moval. F2S3 has shown strong performance in multiple case
studies (Gojcic et al., 2021; Kenner et al., 2022).

All these above approaches share a fundamental limitation:
they rely on geometric information to establish point corres-
pondences, requiring sufficient geometric structure (or variab-
ility) to ensure discrimination and correct matches. In regions
with poor geometric structure, e.g., extended planar areas or
areas with repetitive patterns, their effectiveness diminishes. In
this study, we propose an alternative algorithm for establishing
point correspondences and estimating displacements from TLS
data, which addresses this limitation and expands the available
algorithm toolbox. The algorithm leverages built-in RGB cam-
eras, now standard in TLS systems, which are aligned with the
scanning unit through manufacturer calibration. This allows
for establishing direct 3D point-to-2D pixel correspondences.
Hence, it enables the use of a different data modality (RGB ra-
diometric instead of geometric data) to indirectly establish 3D
point correspondences from 2D pixel correspondences across
epochs, potentially improving results in geometrically poor re-
gions. Furthermore, to capitalize on recent advancements in im-
age processing and mitigate some aforementioned limitations of
traditional methods, we employ one of the state-of-the-art deep
learning-based algorithms Efficient-LoFTR (Wang et al., 2024)
for establishing epoch-wise pixel correspondences.

To validate our method, we compare it with an early 3D DVF
estimation approach: Piecewise ICP (Friedli and Wieser, 2016),
and a state-of-the-art geometry-based approach for 3D DVF es-
timation: F2S3 (Gojcic et al., 2021). The latter method also
provides the highest density of 3D DVFs among all the afore-
mentioned algorithms. We conduct comparisons using both
a physically emulated rockfall dataset and a real-world land-

slide monitoring dataset. The implemented method is described
in the following section (Sec. 2), with experiments presented
in Sec. 3, results and discussion in Sec. 4, and conclusion in
Sec. 5.

2. Methodology

Given the source (first epoch) and target (second epoch) point
clouds along with their associated RGB images (with known
camera intrinsic and extrinsic information), our objective is
to estimate the 3D DVFs between the two epoch-wise point
clouds. This is achieved through a three-step process: first,
we establish 2D pixel correspondences by matching source and
target images (cf. Sec. 2.1); next, we derive 3D point corres-
pondences from these 2D pixel correspondences (cf. Sec. 2.2);
and finally, we refine the 3D point correspondences to produce
the final 3D DVFs (cf. Sec. 2.3). An overview of our method
is depicted in Fig. 1. Although the method is designed for two
epochs, it is readily generalizable to multi-epoch scenarios by
sequentially processing pairs of epochs.

2.1 Image matching

Image matching. Unlike traditional and detector-based
methods (Lowe, 2004; Dusmanu et al., 2019; Sarlin et al.,
2020), detector-free methods bypass keypoint detection,
making them more robust in regions with poor texture or
under extreme changes in viewpoints or illumination. A
representative of detector-free methods is LoFTR (Sun et al.,
2021), which is widely used in various applications, including
remote sensing (Ioli et al., 2023). LoFTR operates on a coarse-
to-fine matching mechanism: it first establishes dense pixel
correspondences at a coarse resolution, incorporating with self-
and cross-attention layers within a Transformer (Vaswani et al.,
2017), and then refines the matches within local patches at a
fine resolution.
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We employ Efficient-LoFTR (Wang et al., 2024), an enhanced
version of LoFTR, to establish epoch-wise pixel correspond-
ences. Efficient-LoFTR improves upon its predecessor in both
efficiency and matching accuracy. Specifically, it optimizes the
matching process by first aggregating similar features in local
regions, then applying attention layers on selected tokens. It
further enhances accuracy by refining matches after the coarse-
to-fine matching through correlation and expectation opera-
tions.

Image tiling. Instead of performing image matching directly
on the original RGB images, we first tile the images to im-
prove matching efficiency and reduce memory consumption.
The tiling strategy is designed to account for the maximum
displacement by incorporating an appropriate overlap between
tiled images.

Figure 2. 2D matching results using Efficient-LoFTR (Wang et
al., 2024). Tiled RGB images are shown in grayscale for bet-
ter visualization. Initial matched pixels are highlighted in cyan
color, with 10 randomly selected correspondence lines visualized
in blue color. These initial correspondences may include errors,
thus further refinement needs to be implemented.

2D match establishment. Once the images from source and
target epochs are tiled, we perform matching between each
pair of tiled images using the Efficient-LoFTR, as illustrated in
Fig. 2. This process yields 2D pixel correspondences between
the tiled images, with pixel coordinates determined based on
the tiled image dimensions. These pixel coordinates are then
converted to the original image coordinates by tiled the pos-
ition of the upper-left corner of each tiled image. The pixel
coordinates between each pair of tiled images are collected to
form the final set of 2D correspondences, denoted as C2D =
{(us,vs,ut,vt)}, where (us,vs) and (ut,vt) represent the
matched pixel coordinates in the source and target images, re-
spectively.

2.2 3D match establishment

Point cloud to image projection. Once the image match-
ing on RGB images is complete, the next step is to establish
3D point correspondences from the 2D pixel correspondences.
However, not all 2D pixels have corresponding 3D points due
to different sensor setup and resolution mismatches between the
scans and the images. To address this, we first project the 3D
points of both epochs onto 2D pixels and then find closest 2D
pixel correspondences for these projected pixels. The projec-
tion is performed using the provided camera intrinsic and ex-
trinsic parameters, as depicted in Eq. (1), which are often avail-
able from scanner-specific software during data pre-processing.

p = K ·M ·P, (1)

where p = [up,vp,1]
T and P = [X,Y,Z,1]T denote homo-

geneous image coordinates and homogeneous point coordin-

ates, respectively. Here, K and M denote 3 × 3 camera in-
trinsic and 3 × 4 camera extrinsic, respectively. The projected
source and target pixel coordinates are denoted as (us

p,v
s
p) and

(ut
p,v

t
p), respectively.

Lift 2D matches to 3D matches. There may exist misalign-
ment between the TLS scanner and its built-in cameras, as in-
vestigated in Wang et al. (2023). To accommodate this, for each
projected 2D pixel from the source point, we find its nearest
neighbor 2D match established in Sec. 2.1 within its k-pixel
radius. If a match is found, the corresponding target 2D pixel is
used to determine the corresponding 3D point, if one exists. We
repeat this process for all projected pixels to establish 3D cor-
respondences. Finally, we filter these correspondences based
on a predefined maximum displacement threshold. We denote
these 3D point correspondences as C3D:

C3D = {(Xs,Ys,Zs,Xt,Yt,Zt)}. (2)

2.3 3D match refinement

Patch clustering. Inspired by the well-established as-rigid-
as-possible assumption (Sorkine and Alexa, 2007), we assume
that the movement within a small area can be approximated as
rigid. This assumption is practical in landslides, where small
stones likely move always as rigid bodies. We define such a
small area as a single patch, which can be identified by cluster-
ing (or segmentation) algorithms.

Figure 3. The clustering result on the Rockfall Simulator dataset.
Left: the source point cloud; Right: the clustering result of the
source point cloud, with different clusters color-coded for visu-
alization. The chosen clustering algorithm well preserves object
boundaries under appropriate settings.

Many clustering algorithms have been proposed in previous
studies. HDBSCAN (Campello et al., 2013), for example, is of-
ten used for background removal, e.g., ground in scene flow es-
timation for autonomous driving (Lin and Caesar, 2024). How-
ever, in our case, the primary goal of clustering is to well pre-
serve the boundaries of objects, e.g., stones. Therefore, we
utilize a supervoxel segmentation algorithm (Lin et al., 2018),
which has been verified to effectively preserve object boundar-
ies in LiDAR point clouds, as shown in Fig. 3.

Patch match refinement. Based on the clustering, 3D points
within each patch are assumed to undergo rigid deformation.
For each patch, we first estimate an initial transformation using
point correspondences within current patch through the Kab-
sch algorithm (Kabsch, 1976). This initial transformation is
then refined through a point-to-point ICP (Besl and McKay,
1992), and we denote the refined transformation as T . Once re-
fined, this transformation is applied to all matched source points
within the patch to form the local displacement vectors, as de-
picted in Eq. (3). Finally, the local displacement vectors from
all patches are collected to generate the final DVFs, denoted as
V̂3D = ∪N

i=1V̂
3D
i , where N represents the number of patches.

V̂3D
i = {T (Xs

i,Y
s
i ,Z

s
i)− (Xs

i,Y
s
i ,Z

s
i)}, (3)
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3. Experiments

To evaluate the proposed method, we conduct experiments on
datasets collected from both a physically emulated rockfall
event and a real-world landslide. We describe the datasets in
Sec. 3.1 and illustrate preliminary observations in Sec. 3.2. In
Sec. 3.3, we detail a manual process to generate dense refer-
ence DVFs that enable performance evaluation. In Sec. 3.4, we
illustrate the baseline methods selected for comparison.

3.1 Datasets

Rockfall Simulator. The Rockfall Simulator is a computer-
controlled mechanical apparatus whose central part can be
moved vertically and rotated around a horizontal axis (Gojcic et
al., 2020), as illustrated in Fig. 4. The surfaces of the simulator
are textured to resemble rocks while the controlled changes in
geometry allow for acquisition of data that emulate measure-
ments of rockfall events with known ground truth. We use the
simulator to perform vertical translations with a magnitude of
approximately 0.035 m. To capture the movement, we employ
a Leica RTC360 scanner to obtain scans before and after the
movement, achieving an average spatial resolution of around
0.0006 m at a distance of approximately 1.7 m. Associated
RGB images are captured using the built-in cameras with a res-
olution of 5120 x 5120 pixels . They provide a ground sampling
distance (GSD) of around 0.0006 m/pixel. Additionally, four
mini prisms are installed in the moved part to provide further
evaluation. We measured the 3D coordinates of these prisms
using a Leica TS60 total station.

: Locations of mini prisms

≈ 0.7 m

≈ 0.8 m

Figure 4. Status of the Rockfall Simulator before (left) and after
(right) the movement.

≈ 830 m ROI_1 ROI_2

≈ 75 m

≈ 75 m

Figure 5. Images of the Brienz TLS dataset and two ROIs at two
epochs. Upper: source epoch (Feb 2020); Lower: target epoch
(Nov 2020). The selected areas for analysis, ROI 1 and ROI 2,
are highlighted in red and green, respectively.

Brienz TLS. The mountain, located to the north of the Bri-
enz village in the Albula valley in Graubünden, Switzerland, is
an area that features unstable rock and landslide displacement
activity. The landslide area moves with a rate of up to several
meters per year (Krähenbühl and Nänni, 2017; Häusler and Fäh,
2018). The Brienz TLS dataset (Kenner et al., 2022) captures
this motion using a TLS scanner of type Riegl VZ-6000, with an

average spatial resolution of 0.08 m at a distance of approxim-
ately 1.5 km. We analyze scans taken at measurement epochs in
February 2020 and November 2020. Each scan comes with 80
RGB images captured by built-in cameras, each of them with a
resolution of 2560 x 1920 pixels and a GSD of approximately
0.05 m/pixel. Within the whole area, we select two region-of-
interests (ROIs) for analysis, with each ROI capturing an area
of 75 m x 75 m, as shown in Fig. 5. From these two ROIs,
four areas—A, B, C, and D—are later selected for more de-
tailed analysis due to their varying deformation characteristics
(cf. Fig. 9).

Data preprocessing. Before conducting deformation ana-
lysis, the point clouds from the two different epochs are aligned
to a common reference system to ensure that the subsequent
analysis primarily reflects actual deformation. The registration
was performed using scanner-specific software. For the Rock-
fall Simulator dataset, we used Cyclone Register 360 Plus to
preprocess and register the scans from two different epochs.
The registration RMSE is 0.001 m, which is significantly smal-
ler than the actual magnitude of the motion (around 0.035 m).
For the Brienz TLS dataset, we employed RiSCAN PRO for
preprocessing and registration, with a registration RMSE of
0.047 m. The camera intrinsic and extrinsic parameters used
to associate scans with RGB images were obtained from the
respective scanner software.

3.2 Preliminary observations

Feature richness. To assess the richness of geometric and
radiometric (RGB) features in the selected areas of the Bri-
enz TLS dataset, we first compute the geometric variation
Vλ (Weinmann et al., 2013), as depicted in Eq. (4). The local
geometric feature richness for each point is then quantified by
computing the standard deviation σVλ

within a local neighbor-
hood defined by a 0.5 m search radius. With

Vλ =
λ3

λ1 + λ2 + λ3
, (4)

and λ1, λ2, λ3 representing the eigenvalues, sorted such that
λ1 ≥ λ2 ≥ λ3, maximum values of 1/3 for Vλ indicate geo-
metric variability in all three dimensions while values around
0 imply planar, linear, or otherwise geometrically degenerated
structure.

Similarly, we compute the standard deviation of the grayscale
intensity values derived from the RGB values to represent local
radiometric feature richness, as these values provide a measure
of color texture. Both geometric variation and grayscale in-
tensity values are normalized to the range [0, 1], allowing for a
direct comparison of feature richness across the selected areas.

In the Brienz TLS dataset, areas A and C (cf. Fig. 9) exhibit
greater richness in geometric features compared to radiometric
features, while in areas B and D, the opposite is true.

3.3 Manually generated reference DVFs

In real-world, ground truth data are rarely available; thus we use
a procedure to generate manual reference data for the perform-
ance assessment. The procedure follows three key steps: First,
we select several areas and subsequently estimate for each area
an initial rigid transformation between the point clouds of the
two epochs (i.e., before and after the movement or deforma-
tion). This initial estimation is obtained by employing the Kab-
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Figure 6. DVFs results on the Rockfall Simulator dataset. The color bar represents the displacement magnitude. The length of the 3D
displacement vectors is proportional to the displacement magnitudes, as demonstrated by the equal scaling applied to all vectors. Only
0.05% of all estimated vectors are visualized for better readability.

sch algorithm (Kabsch, 1976) using coordinates of four manu-
ally picked points. Finally, the transformation of each area is re-
fined using point-to-point ICP (Chen and Medioni, 1992). The
ICP point correspondences are treated as the manually gener-
ated reference DVFs for the respective areas.

For the Rockfall Simulator dataset, we partition it into two areas
corresponding to the moved part and the stable part. Four points
near the mini prisms are picked for the initial transformation
estimation of the moved part.No such calculation is needed for
the stable part because it does not move or deform. The RMSE
on the two parts of ICP point correspondences is about 0.003
m and 0.001 m, respectively. For the Brienz TLS dataset, four
areas are selected (cf. Fig. 9), with four manually picked points
used for initial transformation estimation within each selected
area, yielding an RMSE of around 0.30 m. The final RMSE of
the ICP point correspondences is 0.05 m.

3.4 Baseline methods.

We compare our method against three other approaches that
also generate 3D DVFs: Piecewise ICP (Friedli and Wieser,
2016), F2S3 (Gojcic et al., 2020), and our method w/o refine-
ment. Piecewise ICP serves as an early solution for produ-
cing 3D DVFs, while F2S3 is, to our best knowledge, so far
the only method that uses deep learning to estimate 3D DVFs
based on point-to-point correspondences. Our method w/o re-
finement presents the results primarily from the image match-
ing algorithm we used, without applying the refinement step (cf.
Sec. 2.3). For Piecewise ICP, we set the minimum octree cell
size to 0.05 m and 5 m for the Rockfall Simulator and Brienz
TLS datasets, respectively, with a minimum of 20 points per
octree cell. For F2S3 and our method, the voxel sizes are set
to 0.003 m and 0.100 m for the Rockfall Simulator and Brienz
TLS datasets, respectively.

4. Results and Discussion

4.1 Results on Rockfall Simulator

Comparison of different DVFs. We first present the DVFs
obtained from the different methods, along with the manual ref-
erence in Fig. 6. Our approach yields results that most closely
match the GT in both the moved part (blue areas) and the stable
part (gray areas). Piecewise ICP estimates only very small
movements in the moved part. Our method w/o refinement
(Ours w/o refine.) produces relatively sparse DVFs and exhib-
its inaccuracies at the borders (e.g., the right boundary of the
moved part), due to the absence of further refinement. How-
ever, our refinement component mitigates this issue by correctly
clustering the areas to the left side and applying a robust trans-
formation, resulting in a more accurate DVF.
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Figure 7. ECDF results on the Rockfall Simulator dataset. Only
intersection points among different methods are considered to en-
sure a fair comparison.

ECDF results. We further compare the empirical cumulative
distribution function (ECDF) of point errors, measured by the
norm of DVF discrepancies against the manual reference, as
shown in Fig. 7. In the moved part, our method shows strong
performance, though our method w/o refinement exhibits some
outliers. Piecewise ICP, on the other hand, demonstrates a signi-
ficant discrepancy between the estimated displacement and the
manual reference. This discrepancy arises because the phys-
ically emulated movement occurs primarily parallel to the sur-
face, which is relatively planar. In such cases, Piecewise ICP,
which relies on centroid distance, can significantly underestim-
ate the deformation. In the stable part, both our method and
Piecewise ICP perform well, whereas the results without refine-
ment show errors that can reach up to 0.010 m.

Comparison with TS data. As previously mentioned, we ob-
serve the coordinates of four mini prisms before and after the
movement using a total station. Since these coordinates are ob-
tained in the total station’s own coordinate system, we compute
only the mean movement magnitude. A search radius of 0.05
m is applied to crop areas around the mini prisms. Our method
yields results closest to the total station data, with the mean dis-
placement magnitude showing discrepancies of less than 0.004
m compared to the total station observations.

4.2 Results on Brienz TLS

DVF results. We present the DVFs generated by F2S3 and
our method for two ROIs of the Brienz TLS dataset in Fig. 8.
Overall, both methods produce dense DVFs suitable for de-
formation analysis, with our method generating denser DVFs
of 664 k and 150 k points compared to F2S3’s 118 k and 111 k
points in ROI 1 and ROI 2, respectively. Both methods capture
the main deformation patterns within the individual regions,
e.g., the more uniform and smaller displacement magnitude in
ROI 1 compared to ROI 2. However, discrepancies between
the two methods are evident, and we illustrate these differences
at the intersection points (i.e., points for which both methods
generate DVFs) of the two methods in Fig. 9. The average dis-
crepancies are 0.32 m and 0.36 m for ROI 1 and ROI 2, re-
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Figure 8. DVF results on two ROIs from the Brienz TLS dataset.
The color bar represents the displacement magnitude.
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Figure 9. DVF discrepancies between the intersection points of F2S3 and our method on two ROIs from the Brienz TLS dataset. A
narrow range of the color bar is applied to better visualize the discrepancies. The red circles highlight four areas selected for further
analysis.
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Figure 10. ECDFs for four selected areas of the Brienz TLS data-
set. Only intersection points among different methods are con-
sidered to ensure a fair comparison.

spectively. For further analysis, we focus on four selected areas
(i.e., areas A, B, C, and D) that exhibit varying degrees of dis-
crepancy. A search radius of 5 m is applied to crop these areas
for comparison.

ECDF results. The ECDFs for the four selected areas are
shown in Fig. 10. In areas A and C, F2S3 outperforms our
method, as indicated by the faster convergence of its curves
compared to ours. Conversely, in areas B and D, our method
performs better, with F2S3 showing some offset when com-
pared to the manual reference. Piecewise ICP consistently un-
derestimates deformation, likely due to the high dynamic activ-
ity in this dataset, which makes its uniform octree cell size less
effective at capturing the actual deformations. These observa-
tions are further corroborated by the histogram plots in Fig. 11.

Mean magnitude results. Based on the DVFs in the four se-
lected areas, we further compute the mean displacement mag-
nitudes. Compared to the manual reference data, Piecewise ICP
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Figure 11. Histograms of displacement magnitude differences for
four selected areas of the Brienz TLS dataset. d̂ and dm represent
the displacement magnitudes derived from our method and the
manual reference, respectively. Only intersection points among
different methods are considered to ensure a fair comparison.

consistently underestimates the mean magnitude. In areas A
and C, F2S3 yields estimates closer to the manual reference,
showing an average discrepancy of 0.07 m, whereas our method
has a larger discrepancy of 0.19 m. Conversely, in areas B and
D, our method performs better, with an average discrepancy of
0.02 m, compared to F2S3’s 0.26 m.

3D Displacement vector results. We also provide the es-
timated 3D displacement vectors of our method for ROI 1
in Fig. 12. For better readability, 0.05% of all estimated vectors
are randomly selected and thus represent the overall displace-
ment pattern in ROI 1. Regions where our method struggles
to estimate 3D displacement vectors are characterized by no or
few vectors. The estimated 3D displacement vectors show a
high degree of consistency with our previous results in Fig. 8.

4.3 Further discussion

Choice of the search radius size for local rigid evaluation.
To assess the impact of radius size on local rigid deformation
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Figure 12. 3D displacement vectors for ROI 1 of the Brienz TLS
dataset. Only 0.05% of all estimated vectors are visualized for
better readability.

evaluation, we perform tests with the radius ranging in the in-
terval [3, 9] m. The results presented in Tab. 1 indicate that dis-
crepancies in the mean displacement magnitudes remain below
0.07 m when the radius is adjusted by 2 m. These discrepancies
are significantly smaller than those observed between different
methods. The large discrepancies in the standard deviations are
primarily due to the presence of outliers. For the sake of sim-
plicity, we choose constant radius values of 0.05 m and 5 m for
the Rockfall Simulator and Brienz TLS datasets, respectively,
during the evaluation.

Table 1. Choices of the local rigid radius size (unit: m). The val-
ues for different areas represent the discrepancies in the mean and
standard deviation of displacement magnitudes of our method
compared to the manual reference 1.

Radius size Area A Area B Area C Areas D
3 -0.106 ± 0.145 0.027 ± 0.170 -0.171 ± 0.137 0.093 ± 0.079
5 -0.082 ± 0.355 0.029 ± 0.176 -0.192 ± 0.299 -0.024 ± 0.296
7 -0.129 ± 0.366 -0.003 ± 0.182 -0.265 ± 0.365 -0.024 ± 0.280
9 -0.166 ± 0.371 -0.025 ± 0.187 -0.289 ± 0.359 -0.035 ± 0.237

Run-time comparison. We compare the run-time of F2S3
and our method in Tab. 2. For a fair comparison, both meth-
ods are evaluated on ROI 1 of Brienz dataset using a single
GeForce RTX 3090 Ti with an AMD Ryzen 7 5800X 8-Core
Processor. Our method demonstrates a notable time advantage
in matching, as it operates in 2D space, whereas F2S3 performs
computations in 3D space. Specifically, our method completes
the matching and refinement process in 31 seconds, while F2S3
takes 2.8 times longer. This efficiency gain could become sig-
nificant when applied to real-time monitoring applications.

Table 2. Runtime comparison of F2S3 and our method (unit: s).
Refine. and feat. denote refinement and feature, respectively.

Method 2D matching Refine. 3D feat. extraction 3D matching Total ↓

F2S3 - - 41 45 86
Ours 18 13 - - 31

Limitations. Our method depends on accurate image-to-
point cloud registration, e.g., using scan-specific software when
captured in the same epoch. While resilient to moderate il-
lumination changes (cf. Figs. 5 and 8), it requires sufficient
lighting and may fail in fully shaded or extremely low-light
conditions (e.g., dark nights). Strong illumination shifts (e.g.,
bright sunlight vs. overcast, day vs. full-moon night) and dy-
namic surface changes (e.g., vegetation, wetness) require fur-
ther study. In regions with complex geometric structures but
1 Only the smallest 95.5% of point errors are used in the computation to

exclude some large outliers.

low color variation, the geometry-based method (F2S3) outper-
forms our approach (cf. areas A and C in Fig. 10). Conversely,
in areas with planar surfaces and strong color variation, our
method is superior to F2S3. This observation is further suppor-
ted by our feature richness analysis (cf. section 3.2). Addition-
ally, both our method and F2S3 fail to generate valid estimates
in certain areas (i.e., white regions in Fig. 8), primarily due to
the presence of debris, where neither geometric nor radiometric
features provide sufficient support for accurate correspondence
establishment.

5. Conclusion

In this paper, we propose an approach that leverages RGB im-
ages to generate dense 3D DVFs for LiDAR-based landslide
monitoring. Previously, these images, captured by the built-in
cameras of TLS scanners, have been used primarily for visualiz-
ation purposes. Our method, however, utilizes a deep learning-
based image matching algorithm to produce DVFs with accur-
acy comparable to 3D geometry-based methods such as F2S3.
Experimental results demonstrate that while F2S3 outperforms
our method in areas with rich geometric features, our approach
excels in areas where radiometric (RGB color) features are
more prominent. The DVFs generated by our method can cover
some areas where F2S3 fails to produce DVFs. Furthermore,
our method shows superior computational efficiency, making
it more suitable for near-real-time monitoring scenarios. By
leveraging RGB radiometric features, our method expands the
current algorithm toolbox, which typically focuses on geomet-
ric information. The complementary strengths of our 2D RGB
image-based approach and existing 3D geometry-based meth-
ods suggest that combining both will enhance coverage and/or
accuracy beyond what either method achieves independently.
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