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Abstract 

 

With the popularization of the concept of smart cities and the development of indoor positioning and navigation services, as well as 

the increasing complexity of building structures with the continuous advancement of urbanization, automatic mapping of large-scale 

indoor spatial data has become the fundamental work for subsequent real-life 3D applications. Therefore, this paper develops a 

semantics-guided generation method of indoor spatial data for mapping indoor spaces, where the roles of semantics are investigated 

for the subdivision and reconstruction of indoor spaces. It consists of the following four parts: (1) Semantic segmentation of 3D indoor 

scene; (2) Storey segmentation using semantics-enhanced height histogram; (3) Semantics-guided room segmentation based on 

building physical structures; (4) Room-wise boundary optimization using semantics-aware Recursive Search. Both quantitative and 

qualitative experiments are conducted on two public benchmark datasets: Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset and 

Matterport3D dataset. The results demonstrated that our method is capable of reconstructing complicated large-scale indoor scenes 

with higher robustness and reliability, outperforming existing state-of-the-art algorithms. 

 

 

1. Introduction 

Indoor location services can effectively promote the construction 

of smart cities (Moreno et al., 2014), enhance people's travel 

experience (Farahsari et al., 2022), improve the interactive 

effects of emerging applications such as Augmented Reality 

(AR)/ Virtual Reality (VR) (Baek et al., 2019), which would be 

an important research area for future mobile applications. In 

recent years, indoor map (Otero et al., 2020), as an indispensable 

supporting data for indoor location services, has become 

increasingly popular in the field of navigation and location 

services with the development of digital map technology and 

mobile Internet technology (Fathalizadeh et al., 2023). Location-

based indoor maps are information carriers and tools that abstract 

and summarize the spatial distribution and semantic 

characteristics of indoor spaces/objects through graphic symbols, 

panoramic images, charts, and other forms (Kang et al., 2020). 

Currently, indoor location services are far from universal 

primarily because of the lack of indoor maps, which would also 

be a fundamental issue within the international academic and 

industrial communities (Jeamwatthanachai et al., 2017; Gao et al., 

2018). 

 

The spatial data for indoor map describes the geometric attributes 

of indoor spaces and the topological information expressing 

spatial adjacency and connectivity relationships among indoor 

spaces (Kang and Li, 2017; Zhou et al., 2020), which is the 

geographic framework and carrier platform of indoor maps. With 

the rapid development of cities, there are much larger and more 

complex buildings, where the indoor structure is becoming 

increasingly complex (Park et al., 2020). It poses great challenges 

to the acquisition of indoor spatial data. In the past, the manual 

or interactive methods were mainly used to generate high-quality 

indoor spatial data. However, it is laborious and time-consuming, 

which cannot meet the application requirements of mapping the 

large-scale indoor scenes. Therefore, the automatic acquisition of 

indoor spatial data is a key issue that urgently needs to be 

addressed (Yang et al., 2021). 
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The floorplans, Building Information modelling (BIM) and City 

Geography Markup Language (CityGML) are usually used to 

express building objects in the construction fields. Therefore, lots 

of researches have been devoted to use the floorplans, BIM or 

CityGML as a valuable information source for generating indoor 

spatial data. A BIM is a digital representation of the advanced 

geometric and semantic information of building elements 

through the entire lifecycle of a building. However, it is lack of 

the spatial topological information for the indoor navigation task. 

To better understand the functional relationship, Isikdag et al., 

(2013) made full use of the semantic and geometric information 

defined in a BIM Industry Foundation Classes (IFC) to generate 

a new BIM Oriented Indoor Data model with ISO 19107 

compliant representations for supporting indoor navigation. 

Tashakkori et al., (2015) presented a spatial model using 3D 

architectural and semantic information from BIM (IFC) for 

indoor emergency decisions. Also for indoor emergency 

situations, Boguslawski et al., (2016) produced a full 3D 

topological network of a building environment in order to find a 

safy route. For indoor spaces, it is common for the rooms with 

irregular shapes, which might result in the generation of detours 

in the topological network. Fu et al., (2020) optimized the straight 

medial axis transformation method to produce the indoor 

navigation network derived from the IFC model. As a matter of 

fact, the emergency-related response ia a process from indoor to 

outdoor, not only indoor. To connect the indoor and outdoor 

network, Teo and Cho (2016) presented the entrance-to-street 

strategy based on the constraint of perpendicular and shorter path 

conditions to outdoor vertices. With regards to different forms of 

locomotion (e.g., walking, flying, etc.), the definition of 

navigable free space is different. Diakité and Zlatanova (2018) 

defined a Flexible Space Subdivision framework where the types 

and functions (such as movable capability) of indoor objects 

could be classified to partition a set of subspaces with dedicated 

properties. However, the popularity of BIM is not very high, 

which may restrict the widespread application of the BIM-based 

methods.  
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Although Computer-Aided Design (CAD) is used for the design 

task in the field of architecture both domestically and 

internationally and a large number of floorplans have been 

accumulated. Thus, some studies have also devoted to generate 

the reasonable indoor navigation network from floorplans. Shang 

et al., (2015) integrated semantics with geometric information to 

create a fine-grained navigation network from 2D floor plans, 

where the physical structures are used to define the indoor 

subspace and semantics to further partition the subspaces. Wu et 

al., (2021) interpreted the floorplan using the Mask R-CNN to 

simplify the building elements into rectangles with different 

shapes and then repaired their inconsistent topological 

relationships. It might be insufficient for the route-planning task 

if the semantics and geometric information of indoor spaces are 

only introduced without taking the corridor structures into 

consideration. Pang et al., (2020) mainly focused on the visibility 

of corridor spaces to reconstruct the relationships between 

different types of corridors, where the key locations of corridor 

structures are found. Nevertheless, the up-to-date of the 

floorplans is poor and the description of spatial topology is not 

comprehensive, making it challenging to meet users' concerns for 

accurate navigation and personalized location services within the 

indoor spaces. 

 

In recent years, the development of Light Detection and Ranging 

(LiDAR) and photogrammetry technology has made real-time 

and efficient collection of indoor 3D spatial information possible 

(Meyer et al., 2023). Both can obtain massive (tens of millions) 

of discrete 3D point clouds, which can achieve the true 

expression of indoor 3D scenes and become important data 

sources for generating the spatial data for indoor map (Luo et al., 

2023). Nevertheless, the massive amount of discrete 3D point 

clouds is unstructured, and the presence of noises makes it 

difficult to accurately partition indoor spatial structures. 

Although the size and shape of indoor navigation spaces may 

vary, they are all composed of building components such as 

floors, ceilings, walls, stairs, and openings. This prior knowledge 

is also the basis for users to obtain reliable path guidance between 

these independent navigation spaces (Yang et al., 2021).  

 

Although there have been lots of methods developed to produce 

the spatial data for indoor map from 3D point clouds, it is still 

greatly challenging due to the following aspects. Firstly, the 

existing methods primarily concentrate on mapping the spatial 

data of small-scale indoor scenes (Chen et al., 2019; Luo and 

Huang, 2022; Shabani et al., 2023). It is difficult to extend them 

into the entire storey of large-scale indoor scenes, which would 

restrict the usability of these existing methods. Furthermore, the 

complex situations, such as occlusions, the placement of furniture, 

different states of doors, are common, which also poses a 

challenge to the subdivision and reconstruction of indoor spaces.  

 

To address these challenges, therefore, this paper develops a 

semantics-guided spatial data generation for complex large-scale 

indoor map from 3D colorized point clouds. The main 

contributions are as follows: (1) We developed a semantics-

guided generation method of indoor spatial data for mapping 

indoor spaces, where the roles of semantics are investigated for 

the subdivision and reconstruction of indoor spaces. (2) By 

defining multiple energy terms within Markov Random Field 

(MRF) framework for solving both over segmentation and room 

boundary optimization problems, the refinement of subdivision 

and reconstruction can be cast as an energy minimization issue. 

Consequently, the spatial structures of indoor spaces could be 

recovered properly and effectively under semantic constraints. 
(3) Both quantitative and qualitative experiments are carried out 

on the public benchmark-Stanford Large-Scale 3D Indoor Spaces 

(S3DIS) dataset (Armeni et al., 2016) and Matterport3D dataset 

 

Figure 1. the overview of the developed method 

 

 
(a) 

Floor Ceiling  
(b) 

Floor Ceiling  
(c) 

Figure 2. Comparison between (b) conventional and (c) 

semantics-enhanced height histogram for the same (a) indoor 

point clouds.  
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(Chang et al., 2017), which would confirm that the developed 

method outperforms the state-of-the art.  
 

The rest of this paper is organized as follows. Section 2 describes 

the proposed method in detail. Following this, experimentation 

and analysis is conducted in Section 3. Finally, a brief summary 

with the outlook is given in Section 4.  

 

2. Methodology 

The overview of our proposed method can be shown in Figure 1. 

Figure 1 illustrates the flow chart of the proposed method, which 

consists of the following four parts: (1) Semantic segmentation 

of 3D indoor scene; (2) Storey segmentation using semantics-

enhanced height histogram; (3) Semantics-guided room 

segmentation based on building physical structures; (4) Room-

wise boundary optimization using semantics-aware Recursive 

Search. Key algorithms are given in detail below. 

 

2.1 Semantic segmentation of 3D indoor scene 

As described in Section 1, vertical elements of indoor physical 

structures mainly composed of walls, beams, doors, columns, 

separate the internal space of the room from the external space 

and divide adjacent rooms, which would offer the semantic 

guidance for reasoning the indoor spatial relationships. Therefore, 

we utilize our previous work CGGC-Net (Wang et al., 2023) to 

effectively segment the original point clouds into six categories, 

including floors, ceilings, doors, windows, vertical elements of 

building structures and others. 

 

2.2 Storey segmentation using semantics-enhanced height 

histogram 

Accurately distinguishing and separating floors is a key step in 

building modeling, structural analysis, and data understanding, 

which is crucial for modeling multi-story buildings. Traditional 

floor segmentation methods rely on vertical histograms, using 

height information to identify floors and ceilings (Pexman et al., 

2021). While this approach is effective to some extent, it 

struggles when dealing with complex building layouts, 

particularly when the heights of adjacent floors and ceilings are 

similar, or when various furniture and equipment are placed in 

the interior. In such cases, the performance of vertical histograms 

for separation is often compromised, as shown in Figure 2(a). 

Existing methods typically fail to account for the structural and 

functional differences of the building, leading to less accurate 

segmentation results. 

 

To address this issue, we propose an innovative floor 

segmentation method based on semantic-enhanced height 

histograms, as shown in Figure 2(b). Unlike traditional methods, 

our approach significantly improves floor separation accuracy by 

introducing semantic guidance. Specifically, we enhance the 

point cloud data with semantic information and remove points 

unrelated to floor separation (such as furniture, indoor equipment, 

hanging objects, etc.) from the point cloud. This ensures that the 

height histogram is generated based solely on the physical 

structural features of the building (e.g., floors, ceilings, columns, 

walls). This method not only improves the quality of 

segmentation but also prevents interference from furniture and 

other objects in complex environments. 

 

By using this semantic-guided segmentation technique, we 

achieve more accurate floor separation, especially when dealing 

with structurally complex buildings and diverse interior layouts. 

Traditional geometry-based methods often struggle with these 

complexities, whereas our approach combines semantic 

information with geometric features, improving segmentation 

accuracy while ensuring that the resulting building model aligns 

more closely with the actual structure. This innovative method 

has a unique advantage over existing technologies and pushes 

forward the development of floor segmentation techniques, 

offering a smarter and more robust solution. 

 

2.3 Semantic-guided room segmentation based on building 

physical structures 

The purpose of this subsection is to divide indoor spaces into a 

set of individual units, which consists of initial room 

segmentation based on watershed algorithm and room 

segmentation optimization under MRF framework.  

 

2.3.1 initial room segmentation based on watershed 

algorithm: The building layout is divided into a set of room units 

based on the extracted vertical elements in this subsection. To 

accomplish this task, we can transform 3D space partition into 

2D image segmentation by projecting vertical elements into a 2D 

grid map to generate a binary image (as shown in Figure 3(a)). 

More specifically, the value of the corresponding pixel in the grid 

map is assigned a value of 1 if the grid contains point clouds, 

otherwise it is assigned a value of 0. The pixel size of this grid 

 

 

 

 

 

 

(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. An example of floorplan generation and selection on Area 1 on S3DIS dataset. (a) is the 2D grid projection map of vertical 

elements point cloud. (b) is the distance transformation map. (c) is the result of watershed operation. (d) is the result of room 

segmentation optimization. (e) is the result of room-wise boundary optimization. (f) is the vector-graphic floorplan. 
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map derived from the projection transformation is experimentally 

set to 8 cm.  

 

Following this, distance transformation maps (Diosi et al., 2005) 

can be obtained on the generated grid map, where the grayscale 

value of each pixel in the distance transformation map represents 

the distance from that point to the nearest border. Thus, the local 

maximum usually exists at the centre of each room, which is the 

basis for subsequent spatial partitioning.  

 

Finally, after reversing the distance transformation map (as 

shown in Figure 3(b)), a watershed algorithm can segment the 

indoor environment into a set of room units (as shown in Figure 

3(c)) since the watershed algorithm is an effective image 

segmentation method that views images as terrain and landforms, 

where the grayscale values of pixels represent altitude. In this end, 

the indoor spaces are initially partitioned into a set of individual 

units. 

 

2.3.2 Room segmentation optimization under MRF 

framework: As explained in (Yang et al., 2021), over 

segmentation may occurs even if there is no building architecture 

inside the room, and it is more likely to emerge in more 

complicated large-scale indoor scenes. However, in contrast to 

component connectivity strategy adopted in (Yang et al., 2021), 

an optimization applies MRF model to merge over-segmented 

rooms has been proposed. 

 

Markov Random Field is a graphical model used to model joint 

probability distributions, commonly used to describe 

relationships between multiple variables and to handle data with 

complex spatial structures. A Markov model can be represented 

as an undirected graph G =< V, E > , where V  represents the 

various spatial units after initial room segmentation, and E 

denotes a set of undirected edges. The set of undirected edges 

consists of two parts: edges connecting source and sink points, 

and edges connecting spatial units pairwise. Then the merge of 

over-segmented rooms can be described as a multi-class label 

optimization problem, given a series of spatial partition units F =
{fk|1 ≤ k ≤ m} , assign room instance labels L = {lk|1 ≤ k ≤
m} to F. In the field of computer vision, this problem can be 

transformed into minimizing the energy objective function, as 

formulated in Eq. (1): 

D(L) = ∑ Ddata(lk)

m

k=1

+ λ ∗ ∑ Dsmooth(lj, lk)
(j,k)∈G

 (1) 

where Ddata(lk) denotes data term and Dsmooth(lj, lk) represents 

pairwise term. λ represents the weight coefficient that balances 

data term and pairwise term. 

 

Data term. Date term is designed to measure the degree of 

adaptation of a certain room unit to its corresponding category. 

Specifically, it can be expressed as Eq. (2): 

Edata(lk) = 1 −
Ak

Bk
 (2) 

where Bk represents the number of boundary points for a specific 

room unit fk , and Ak  represents the number of adjacent points 

between the room unit fk and other room units. 

 

Pairwise term. Pairwise term is used to encourage two adjacent 

spatial units to separate or merge. When there are no building 

vertical elements between two adjacent spatial units, they are 

more likely to have the same label value. Similarly, when there 

exists building vertical elements between them, they are more 

likely to possess different label values. Therefore, the pairwise 

term can be defined: 

Esmooth(lk, lj) = {

   0                  if  lk = lj

|ejk| ∙ (1 −
|ejk ∩ v|

|ejk|
)          if  lk ≠ lj

 (3) 

where ejk denotes the incident edge between room unit fj and fk, 

v represents the vertical elements, and |e| is the length of edge e. 

 

Ultimately, our proposed MRF model is solved by the α-β-swap 

algorithm (as shown in Figure 4). The result of the optimized 

room segmentation can be seen in Figure 3(d). 

 

α

β

p q

cut

 

α

β

p q

cut

 

α

β

p q
cut

 
(a) (b) (c) 

Figure 4. Examples of α-β-swap algorithm. (a), (b) and (c) represent three situations in graph cutting algorithms. Dotted lines 

indicate the edges cut while solid lines indicate the edges remaining in the original graph. 

 

 

Figure 5. Illustration of room-wise boundary optimization 

algorithm.  
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2.4 Room-wise boundary optimization using semantics-

aware Recursive Search 

Due to the presence of noise points, the boundaries of the rooms 

segmented in the previous step are irregular, thus the objective of 

this subsection is to obtain room borders of regular while 

maintaining its original shapes as much as possible. The 

inspiration of our work is to transform the room boundary 

optimization into an energy objective formulation minimization, 

which is formulated in Eq. (4): 

U(Ri) = Ucomplexity(Ri) + β ∗ Ufreedom(Ri) (4) 

where Ucomplexity(Ri)  is complexity term, and Ufreedom(Ri) 

represents the freedom term. β is a weight parameter balancing 

the two terms. Ri  represents the loop of room boundary, and 

specifically it is defined as a polygonal curve with a loop 

topology, consisting of a sequence of pixels at integer coordinates. 

 

Complexity term. Ucomplexity(Ri)  is the model penalty 

describing the complexity of the refined room boundary, which 

can be quantified by the number of corners within each loop (as 

defined in Eq. (5)). 

Ucomplexity(Ri) = {number of corners of Ri} (5) 

 

Freedom term. Ufreedom(Ri) describes the penalty of degrees of 

freedom in boundary refinement, which can be formulated in Eq. 

(6). 

Ufreedom(Ri) = ∑ V(p)

p∈Pi,p∉Pi
′

 (6) 

where p represents the pixels of loop Ri, Pi
′ and Pi denotes the 

room areas before and after optimization, respectively. V(p) is 

used to measure the penalty value of pixels at different positions. 

𝑉(𝑝) = {
𝜇1       if  labelmap(𝑝) = 0

𝜇2       if  labelmap(𝑝) ≠ 0
 (7) 

where labelmap(p)  refers to the 2D grid map generated by 

projecting the original point cloud onto the X-Y plane. When 

there is no point cloud within a certain grid, its value is set to 0. 

Considering the presence of noise points or point cloud 

deficiency caused by occlusion, the generated 2D grid map 

labelmap cannot accurately reflect the indoor building structure. 

Therefore, the areas with value of 0 within labelmap are also 

required to be considered, but the penalty term for its 

corresponding pixel should be larger. In our experiments, μ1 is 

set to 1 while μ2 is set to 3. 

 

We search for the optimal room boundary by minimizing the 

energy formulation through a designed semantics-aware 

recursively searching strategy which is described in Algorithm 

1. Figure 5 provides a more intuitive representation of our 

proposed algorithm. The purpose of our method is to search 

within the boundaries of the original room, filling in some blank 

pixels during the search process to minimize the energy 

formulation. Afterwards, the boundary points of the 8-connected 

domain are extracted to connect adjacent points into a line and 

merge the line segments on the same line. Ultimately, as shown 

in Figure 3(e), the refined room boundary can be obtained after 

converting the rasterized image of the above results into vector-

graphic data (as shown in Figure 3(f)). 
 

3. Experimentation and analysis 

3.1 Evaluation on room segmentation 

Four metrics are adopted to evaluate the performance of room 

segmentation, including, precision, recall and F1-score. IoU 

measures the ratio of the overlapping area between the predicted 

rooms and the ground truth. The precision, recall and F1 score 

are formulated in Eqs. (7-10). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

𝐹1−score =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

IoU =
𝑇𝑃𝑖

𝐺𝑇𝑖 + 𝐹𝑃𝑖
 (10) 

where TP represents the number of true positives, TN represents 

the number of true negatives, FN represents the number of false 

negatives, and FP  represents the number of false positives. 

Additionally, TPi , GTi , and FPi  represent the number of true 

positives, ground truth, and false positives in class i, respectively. 

 

3.2 Storey segmentation results 

In the section of the storey separation, the semantic point clouds 

are used to analyse the height characteristics of the building and 

calculated the semantics-enhanced height histogram along the 

vertical direction. Based on this histogram, peak detection 

algorithm was applied to successfully identify the heights of 

multiple floors and ceilings, and Figure 6 shows significant 

height differences, which are in line with the characteristics of 

building structures. 

 

Algorithm 1: Semantics-aware Recursive Search 

Input: Current room boundary loop: 𝐶𝑢𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,  

Current room area of Curboundary: 𝐶𝑢𝑟𝐴𝑟𝑒𝑎,  

Original room boundary loop: 𝑅𝑖
′,  

Original room area of 𝑅𝑖
′: 𝑃𝑖

′,  

The rectangular area where the room is located: 𝑅𝑒𝑐𝑡𝐴𝑟𝑒𝑎,  

Start position in searching: 𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠,  

Current position in searching: 𝐶𝑢𝑟𝑃𝑜𝑠,  

First stored searching direction: 𝐹𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,  

Second stored searching direction: 𝑆𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,  

Optimal penalty in searching: 𝑂𝑝𝑖𝑡𝑚𝑃𝑒𝑛𝑎𝑙𝑡𝑦,  

Current penalty in searching: 𝐶𝑢𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Output: Refined room boundary loop: 𝑅𝑖, 

1.   if 𝐶𝑢𝑟𝑃𝑜𝑠 == 𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠 

2.     𝐶𝑢𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ← 𝑈(Curboundary); 

3.     if 𝐶𝑢𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦 < 𝑂𝑝𝑖𝑡𝑚𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

4.       𝑅𝑖 ← 𝐶𝑢𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦; 

5.  𝑂𝑝𝑖𝑡𝑚𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ← 𝐶𝑢𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦; 

6.       return;  

7.   𝐶𝑢𝑟𝑃𝑜𝑠 ← 𝐶𝑢𝑟𝑃𝑜𝑠 + 𝐹𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛; 

8.   if 𝐶𝑢𝑟𝑃𝑜𝑠 ∈ 𝑅𝑒𝑐𝑡𝐴𝑟𝑒𝑎 

9.     if 𝐶𝑢𝑟𝑃𝑜𝑠 ∈ 𝑅𝑖
′ && 𝑃𝑖

′(𝐶𝑢𝑟𝑃𝑜𝑠)! = 0 

10.     𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ; 

11.   else if 𝑃𝑖
′(𝐶𝑢𝑟𝑃𝑜𝑠) == 0 

12.     𝑆𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝐶𝑢𝑟𝑃𝑜𝑠 , 

𝑅𝑖
′); 

13.     𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ; 

14.     𝐹𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑆𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛; 

15.     𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ; 

16. else 

17.   𝐹𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑆𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛; 

18.   𝐶𝑢𝑟𝑃𝑜𝑠 ← 𝐶𝑢𝑟𝑃𝑜𝑠 + 𝐹𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛; 

19.   𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ; 
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3.3 Room segmentation results 

3.3.1 Room segmentation on S3DIS dataset: Figure 8 shows 

the generation results of indoor subspaces on S3DIS dataset at 

different steps, including watershed segmentation, room 

segmentation through MRF optimization and room-wise 

boundary refinement. There are many over segmentation 

phenomena in the indoor space partition based on the building 

physical structures, which is caused by the limitations of the 

watershed algorithm. Based on room optimization module under 

the Markov random field framework, the problem of merging 

over segmented units is transformed into an energy minimization 

problem and solved using graph cuts. The third column of Figure 

8 illustrates the corresponding results. It shows that room 

segmentation optimization based on Markov random field model 

has achieved the merging of over-segmented indoor spatial units, 

especially in rooms such as some long corridors. Moreover, due 

to the influence of point cloud noises, the boundaries of the room 

units are not regular. The room-wise boundary optimization 

combined with topological information transforms the building 

boundary optimization problem into an energy minimization 

problem. From the forth column in Figure 8, the room boundary 

has become more regular while retaining finer details. 

 

 

Type of room Size(m2) 
Recall 

(%) 

Precision 

(%) 

F1-score  

(%) 

Region1 13.0 98.1 97.1 97.6 

Region2 16.3 94.4 93.8 94.1 

Region3 7.16 97.3 92.3 94.7 

Region4 50.5 98.2 95.2 96.6 

Region5 7.1 91.8 98.5 95.0 

Region6 25.9 94.4 97.5 95.9 

Table 3 Quantitative evaluations on Area 1 of Matterport3D 

dataset. 

 

Type of room Size(m2) 
Recall 

(%) 

Precision 

(%) 

F1-score  

(%) 

Region1 31.9 95.3 100.0 97.6 

Region2 55.4 91.3 99.9 95.4 

Region3 30.2 94.4 94.2 94.3 

Region4 8.25 97.0 99.2 98.1 

Region5 30.1 94.6 96.2 95.4 

Region6 8.6 94.2 98.5 96.3 

Table 4 Quantitative evaluations on Area 2 of Matterport3D 

dataset. 

 

 

Type of room Size(m2) 
Recall 

(%) 

Precision 

(%) 

F1-score  

(%) 

ConferenceRoom_1 24.2 88.8 100.0 94.1 

ConferenceRoom_2 35.7 88.3 99.8 93.7 

CopyRoom_1 10.2 89.5 100.0 94.5 

Hallway_1 6.7 97.9 93.3 95.5 

Hallway_2 104.6 92.7 97.0 94.8 

Office_1 13.0 91.5 100.0 95.5 

Office_2 30.8 93.8 100.0 96.8 

Office_3 17.2 92.5 100.0 96.1 

Office_4 17.2 94.3 99.8 97.0 

WC_1 2.2 83.9 99.9 91.2 

Table 1 Quantitative evaluations on Area 1 of S3DIS dataset. 

 

Type of room Size(m2) 
Recall 

(%) 

Precision 

(%) 

F1-score  

(%) 

Auditorium_1 213.9 98.0 98.0 98.0 

Auditorium_2 282.7 99.7 100.0 99.8 

ConferenceRoom_1 66.8 87.4 100.0 93.3 

Hallway_1 5.8 97.2 93.0 95.0 

Hallway_2 21.6 99.3 98.5 98.9 

Hallway_3 24.3 99.6 96.8 98.2 

Office_1 9.2 97.8 96.6 97.2 

Office_2 12.2 95.3 100.0 97.6 

WC_1 12.8 99.2 99.9 99.5 

Storage_1 3.4 99.5 100.0 99.7 

Table 2 Quantitative evaluations on Area 2 of S3DIS dataset. 

 

 

  Floor Ceiling  

  Floor Ceiling  

  Floor Ceiling  
(a) (b) (c) 

Figure 6. Storey segmentation results:(a)Colorized point clouds, (b)Segmented Storeys, (c)Semantics-enhanced height histogram 
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To quantitatively evaluate the accuracy of room segmentation, 

we cannot directly report the recall, precision and F1-score for the 

entire scenario since compared with previous researches (ISPRS 

2021), we focus on more complex and challenging large-scale 

indoor scenes, which are prone to over segmentation and under 

segmentation. As a result, the predicted number of segmented 

rooms is different from ground truth. Thus, in this subsection, we 

display some selected representative rooms in each scene for the 

quantitative evaluation. 

 

Tables 1 and 2 present the results of room segmentation from the 

quantitative perspective in different scenarios on S3DIS dataset. 

For most of room segmentation results, the recall is above 90% 

and the precision is above 95%. It can be concluded that the 

semantic guided indoor room segmentation method is effective 

for complex layout indoor spaces in large scenes. In addition, the 

vertical physical structures of buildings obtained through 

semantic information and subsequent spatial partitioning using 

distance transformation maps and watershed algorithms can 

provide prior information for subsequent room segmentation, 

ensuring a high recall rate of segmentation results. Based on 

Markov random fields, optimizing and merging the over 

segmented rooms ensures high accuracy of the segmentation 

results. It is worth noting that for some large rooms over 200 

square meters, the room segmentation can still achieve satisfying 

results, with its precision, recall, and F1-score all exceeding 98%. 

 

3.3.2 Room segmentation on Matterport3D dataset: 

Compared with S3DIS dataset, although the number of rooms in 

Matterport3D dataset is relatively small, around 20, the sparse 

point clouds and missing point clouds in some scenes make the 

room segmentation even more challenging. We select three 

scenarios with different complexity and characteristics for 

evaluation. 

 

The results of room segmentation at different stages are listed in 

Figure 9. The ground truth is created by projecting the room 

labels provided by the dataset onto a two-dimensional grid map, 

so the ground truth may not be accurate. But intuitively, our 

segmentation results can restore the spatial distribution of the 

original scene. Like the previous subsection, quantitative 

evaluation for selected rooms is reported in Tables 3 and 4. We 

can observe that most of rooms can get a satisfying performance, 

with recall, precision exceeding 88.1%, 92.3% and 93.2% 

respectively. The relatively low recall rate is mainly due to 

inaccurate ground truth. 

 

3.4 Impact of Doors on Room Segmentation 

Doors are structures that connect adjacent spaces, marking the 

separation between rooms. Since it is not possible to ensure that 
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 (a) (b) (c) (d) 

Figure 8. The generation of indoor subdivision on S3DIS. Different rooms are rendered with different colors: (a)Watershed result, 

(b)MRF optimization, (c)Room boundary optimization, (d)Ground Truth. 
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Figure 9. The generation of indoor subdivision on Matterport3D. Different rooms are rendered with different colors: 

(a)Watershed result, (b)MRF optimization, (c)Room boundary optimization, (d)Ground Truth. 

 

 
  

(a) (b) (c) 

Figure 7. Examples of the door in different states: (a) open, 

(b) closed, (c) partially open.  
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every door remains closed during data collection, the open/closed 

state of the door needs to be considered in room segmentation. 

The states of a door can be classified into three types: closed, 

open, and partially open, as shown in Figure 7. 

 

For closed doors, the model presented in this paper recognizes 

them as part of the vertical building category for subsequent 

spatial segmentation, which does not affect the room 

segmentation results. For open or partially open doors, gaps may 

exist between adjacent rooms, which theoretically could lead to 

under-segmentation of rooms. However, the proposed model 

avoids this issue because doors and door frames always appear 

together. Regardless of whether the door is open or partially open, 

the door frame consistently aligns with the wall. Therefore, when 

the door frame is semantically recognized as part of the vertical 

building category, it does not affect the room segmentation 

results. Compared to traditional methods that rely on geometric 

constraints, the approach based on semantic information 

guidance handles the impact of door status changes on 

segmentation results more effectively, ensuring that room 

segmentation accuracy remains unaffected even when doors are 

open. 

 

Additionally, the method proposed in this paper utilizes Markov 

Random Field (MRF) to optimize the over-segmentation issue, 

considering factors such as the location and length of walls, 

rather than relying solely on room connectivity. This 

optimization approach avoids segmentation issues caused by the 

open/closed state of the door, ensuring the precision of the 

segmentation results. 

Through these improvements, the model demonstrated in this 

paper shows high stability and accuracy in handling the influence 

of door status, effectively mitigating the negative impact of door 

status changes on room segmentation. 

4. Summary and outlook 

This paper introduces a semantic-guided pipeline for large-scale 

indoor spatial data generation, focusing on room segmentation 

and boundary optimization. Unlike methods that rely on 

geometric constraints for indoor space partitioning, which can be 

hindered by issues like furniture placement, uneven point cloud 

distribution, or object occlusion, our approach leverages 

semantic information. This allows for the extraction of geometric 

primitives that enable efficient space subdivision across multiple 

storeys. Through optimization using multiple energy functions, 

we address over-segmentation and room boundary optimization, 

with the refined subdivision generated by minimizing these 

energy functions. Our experiments on the Stanford Large-scale 

3D Indoor Spaces Dataset and Matterport3D dataset demonstrate 

the effectiveness and robustness of the proposed method. 

 

However, despite the strong results in our experiments, 

challenges remain in handling sparse and noisy data, which may 

impact the performance of the method in more complex 

environments. In sparse data situations, when the point cloud 

density is low—particularly in areas with minimal furniture or 

simple room layouts—the method may struggle to capture the 

necessary geometric features of the space. This can lead to 

inaccurate segmentation results. To address this, future work 

could incorporate data augmentation techniques like point cloud 

reconstruction or random sampling to enhance the density of the 

input data. Multi-scale analysis methods could also be employed 

to process data at varying resolutions, helping to improve the 

method’s adaptability and robustness in such conditions. 

 

Expanding the scope of experiments to evaluate the method in 

more diverse environments would help confirm its 

generalizability. Testing the method in more complex or non-

traditional indoor spaces, such as industrial facilities or 

unconventional buildings, would help demonstrate its versatility 

and reliability in a wider range of contexts. Additionally, 

incorporating deep learning techniques like point cloud deep 

learning networks could further improve the method's ability to 

handle large-scale, complex datasets. These techniques are 

particularly effective at extracting meaningful features from 

dense point clouds and could lead to better segmentation 

performance in large and intricate environments. What’s more, 

we also plan to apply the semantic-guided method to outdoor 

scenarios, such as UAVs and vehicle-mounted LiDAR systems, 

for 3D scene reconstruction. This extension has significant 

potential for real-world 3D modeling and smart city applications. 
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