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Abstract 
 
Real-time analysis and mining of vehicle GPS data is essential for effective traffic regulation. Currently, most vehicle analysis 
algorithms based on GPS data are designed for static datasets, with fewer algorithms addressing dynamic streaming GPS data. 
Moreover, the limited number of real-time algorithms primarily focus on public transportation vehicles such as taxis and buses. 
There remains a significant gap in the analysis of specialized vehicles like dump trucks, which fails to meet the regulatory needs for 
monitoring these vehicles. To address this, this paper proposes a method for identifying driving states and detecting collision risks 
for dump trucks based on real-time GPS stream data. First, by partitioning the data, the method enables the separate calculation and 
identification of various operational states of different vehicles, such as their location, speed, and direction. Second, we partition the 
data based on vehicle positions to detect potential collision risks among vehicles in nearby areas. Experimental results show that the 
data throughput reaches 25,000 and 66,000 records per second for each method, with a data skew rate controlled below 0.1, 
demonstrating the method’s efficiency in real-time driving state recognition and collision risk detection for dump trucks. 
 
 

1. Introduction 

In recent years, with the continuous development of software 
and hardware technologies, an increasing number of sensors 
have been deployed in public infrastructure to collect real-time 
information on equipment operation (Li et al., 2020). The 
constantly generated data, containing both temporal and spatial 
information, form spatiotemporal streams (Brandt et al., 2018). 
These highly time-sensitive spatial streams provide a 
foundational data support for real-time monitoring and analysis 
across various industries and fields, enabling more timely and 
informed decision-making (Li et al., 2022; King and Osborn, 
2023; Chen et al., 2023).  
 
To effectively analyse spatial streaming data, fully unlock its 
potential, and achieve the aforementioned goals, many 
researchers have conducted extensive research in this area. The 
two main research directions focus on extending support for 
spatiotemporal data in streaming data processing platforms and 
improving algorithms for more efficient data processing. In the 
area of extending spatiotemporal data support on streaming 
platforms, many researchers have carried out foundational work 
using platforms such as Flink and Spark, including defining 
fundamental spatial data types like points, lines, and polygons, 
and constructing spatial indexes. Additionally, a series of basic 
streaming operations have been developed, including spatial 
queries and spatial joins, which have significantly improved the 
real-time computation efficiency of spatial streams (Yu et al., 
2019; Shaikh et al., 2022). In terms of improving algorithms for 
efficient data processing, researchers have designed various 
streaming algorithms for different application scenarios. For 
instance, some researchers have developed methods to detect 
anomalies in bus trajectories and missed stops based on real-
time GPS data (Zou et al., 2023). To address the widespread 
challenge of storing large volumes of GPS trajectory data, 
others have designed and implemented a trajectory compression 

method, which enables efficient compression of large-scale GPS 
data in parallel computing environments (Xiong et al., 2023). 
Furthermore, for the detection and management of hazards 
involving large numbers of commercial vehicles or ships, 
researchers have developed methods to monitor moving entities 
and identify complex patterns (Ntoulias et al., 2021). 
 
However, vehicle analysis and monitoring have predominantly 
focused on static data analysis, aiming to identify driving 
patterns by analysing vehicle driving data (Jeon et al., 2019; 
Zhao et al., 2020). The real-time analysis primarily focuses on 
public transportation vehicles such as buses and taxis. (Agrawal 
et al., 2018; Li et al., 2019; Mestre et al., 2023). And the real-
time analysis of such public transportation vehicles mainly 
focuses on whether their movement trajectories are reasonable, 
which cannot fully cover the functions required for the 
regulation of dump trucks. Therefore, there are still many gaps 
in the research on regulatory algorithms for dump trucks. This 
paper designs and implements an efficient real-time 
computation system for the massive stream of dump truck GPS 
data based on the Flink streaming platform. By analysing the 
real-time driving states of dump trucks, the system identifies 
potential violations such as speeding and unauthorized entry 
into restricted areas, and provides warnings in dangerous areas 
when trucks pass each other. Finally, this enables efficient and 
real-time monitoring of dump trucks. 
 

2. Method 

Figure 1 illustrates the overall framework of the proposed 
method. The data processing workflow is divided into two main 
stages: driving state recognition and collision risk detection. 
The data source consists of an unbounded stream of real-time 
generated GPS data records for dump trucks. Each GPS record 
in the stream primarily includes the vehicle identification code, 
vehicle location, and the timestamp of the GPS record. When 
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GPS data from dump trucks is generated, it is continuously 
consumed in real time by the computing cluster as a GPS data 
stream. To efficiently process and analyse this data, a pre-
processing step is first conducted to convert the data into a 
format suitable for analysis and to filter out erroneous data. 
Subsequently, the data is partitioned based on the unique 
vehicle identification code using a hash partitioning strategy. 
This ensures that all records with the same vehicle identification 

code are sent to the same parallel task. Next, according to the 
requirements for driving state and collision risk detection, each 
vehicle’s driving state is calculated in real time, and potential 
collision risks among multiple vehicles are assessed. Finally, 
the results are aggregated to produce the final output. The 
specific algorithmic details for driving state recognition and 
collision risk detecting are provided in Sections 2.1 and 2.2. 

 
Figure 1. The overall framework of the methodology. 

 
2.1 Driving States Identification 

2.1.1 Speed Anomaly Detection Algorithm. The specific steps 
for detecting speed anomaly are as follows: When a new record 
is consumed by the computing cluster, the data is first logically 
partitioned based on the unique vehicle identification code. In a 
distributed environment, the data is then divided and processed 
separately on different computing nodes. For each individual 
vehicle, separate identification operations are performed. When 
new record arrives, the first step is to assess the time difference 
between it and the previous record. For instance, if the time 
interval between two records exceeds one minute , it indicates 
that the correlation between these two records is weak, and the 
new record does not need to be processed; if the time interval is 
within one minute, it proceeds to the next step of the processing 
flow. the next step is to determine the distance between the two 
GPS locations and calculate the average speed of the dump 
truck to assess if it is speeding. Due to possible errors in GPS 
data, it is necessary to exclude clearly erroneous calculations 
during the average speed computation. We used Haversine 
formula to calculate the distance. The Haversine formula is 
presented as follows: 
 

       (1) 

 
 

                         (2) 
Where   φ1 and φ2 are the latitudes of the two points 
Where   Δφ is the difference in latitude between the two points 
Where   Δλ is the difference in longitude between the two points 
Where   R is the radius of the Earth 
Where   d is the distance between the two points 
 
2.1.2 Location Anomaly Detection Algorithm. The specific 
steps for location anomaly are as follows: First, based on the 
temporal characteristics of the restricted areas for construction 
trucks, the GPS timestamps are checked to determine if they fall 
within the restricted time periods, using this temporal attribute 
to filter the data. Second, restricted zones can be categorized 
into two main types: administrative area restrictions and road 
restrictions. Administrative area restrictions are typically larger 
in scope, covering extensive areas with multiple vector 
endpoints, while road restrictions are smaller in size and require 
higher precision. According to the characteristics of these two 
types of restricted areas and to ensure both the effectiveness of 
the algorithm's recognition and computational efficiency, 
different precision recognition methods are used. Specifically, 
an index set of basic spatial units that intersect with the vector 
restricted areas is obtained in advance. The basic spatial units 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-975-2025 | © Author(s) 2025. CC BY 4.0 License.

 
976



 

are continuous, non-overlapping square regions that cover the 
study area, similar to a fishing net. The index numbers start 
from the southwestern corner of the study area and increase 
from west to east. Upon reaching the eastern boundary, the 
indexing moves to the next row and continues to increase from 
west to east. In this study, the size of each basic spatial unit is 
500m × 500m. During the evaluation process, for administrative 
area restrictions, determining whether the basic spatial unit 
containing the GPS data is included in the above index set. In 

contrast, for road restriction areas, a vector-based method will 
be used to evaluate the spatial relationship between the points 
and the restricted zones. By utilizing time, location, and the 
different characteristics of restricted areas for data filtering, this 
multi-layered screening mechanism significantly reduces the 
number of vector evaluations, thereby greatly enhancing the 
operational speed of the cluster. Figure 2 illustrates the methods 
for detecting location anomalies in different types of restricted 
areas. 

 
Figure 2. The methods for detecting location anomalies in different types of restricted areas. 

2.2 Collision Risk Detection 

The specific algorithmic steps for the collision risk detection 
algorithm are as follows: data is logically partitioned based on 
the unique vehicle identification code to calculate the driving 
direction of each vehicle separately. Vehicle information and 
driving direction data are then further partitioned according to 
the basic spatial units they located in. Vehicles moving in 

opposite directions within the same basic spatial units are 
compared using a dual-stream traversal comparison method. By 
calculating the distances between these vehicles, potential 
collision risks can be identified by determining whether the 
distances are less than 50 meters. Figure 3 presents the collision 
risk detection algorithm. 

 

 
Figure 3. The collision risk detection algorithm. 

3. Experiments 

3.1 Test Datasets 

The study area is defined as the minimum bounding rectangle of 
Shenzhen, ranging from 113.751647°E to 114.622924°E 
longitude, and from 22.446379°N to 22.855425°N latitude. The 
test dataset consists of dump truck GPS data within this area, 

totalling 53,385,954 records and approximately 3.36 GB in size. 
The data covers a three-day period from May 2 to May 4, 2020, 
and it primarily includes the vehicle's longitude and latitude 
information, vehicle ID, and the recorded timestamp. Table 1 
presents the detailed attribute information of the data. Figure 4 
shows the study area. 

 
Attribute Name Data Structure Type Specific Meaning 
TRACK_ID NUMBER Point id 

VEHICLE_ID NUMBER Vehicle id 

LNG NUMBER Longitude 

LAT NUMBER Latitude 

GPS_TIME DATE GPS Recording Time 

Table 1. Data Attribute Table. 
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Figure 4. Study area. 

 
3.2 Experimental result and Algorithm Performance 
Analysis 

3.2.1 Analysis of Speed Anomaly Detection Results. From 
a temporal perspective, the data volumes on May 2 and May 3 
reached 50,564 and 56,534 records, respectively, while May 4 
showed a sharp decrease to 11,341 records. This substantial 
difference likely stems from the fact that May 2 and May 3 fell 
on the weekend, whereas May 4 was a Monday. On weekends, 
particularly in the early morning or late-night hours, traffic 
volume often drops significantly. In these less congested 
conditions, dump truck drivers may be more inclined to exceed 
speed limits to enhance transportation efficiency, resulting in 
the observed high rate of speeding incidents, with weekend 
speeding accounting for 90.4% of cases. Table 2 provides 
speeding information according to time. 
 

 
 Total May 2nd May 3rd May 4th 

Frequency 118,442 50,564 56,534 11,341 

Percentage 100 42.7 47.7 9.6 

Table 2. Speeding information according to time. 
 
In terms of the locations where speeding occurred, most 
instances took place on highways, expressways, and main city 
roads. This aligns with the objective conditions typically 
conducive to speeding. Figure 5 illustrates the locations where 
speeding incidents occurred in Yantian District. The left depicts 
the situation on weekends, while the right represents the 
scenario on weekdays. 
 

  
Figure 5. Locations of speeding incidents in the Yantian District. 

 
3.2.2 Analysis of Location Anomaly Detection Results. After 
comprehensively considering the relationship between the 
accuracy of the algorithm and computational efficiency, this 
study opted to combine basic spatial units that intersect with 
restricted areas and vector-based assessments for determining 
whether the record is in the restricted zones. The experiments 
get a total of 1,414,689 abnormal data records. Among these, 
57,976 records were located within basic spatial units but  

 
outside the polygon restricted areas, accounting for 
approximately 4%. In comparison, if all data were evaluated 
using vector-based methods, the processing time for a single 
data tuple would increase by about six times. Conversely, if 
solely basic spatial units were used for assessment, the number 
of records located within these units but outside the restricted 
areas would rise to 297,084, approximately 21%. Therefore, the 
other two approaches either had a higher misjudgement rate or 
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struggled to maintain operational efficiency. Consequently, not 
relying entirely on vector-based assessments remains a more 
suitable approach. Table 3 provides comparison of efficiency of 
location anomaly detection algorithms. 
 
3.2.3 Analysis of Collision Risk Detection Results. From the 
analysis of collision risk results, the distribution of collision risk 
results was spread throughout the study area. The identification 
results are particularly meaningful in locations characterized by 
rugged mountain roads, with many sharp turns and poor 
visibility conditions. Providing potential collision risk alerts to 
drivers of large vehicles, such as dump trucks, in these areas can 
significantly reduce the possibility of accidents and enhance 
driving safety. Figure 6 presents the collision risk analysis 
results for certain provincial roads in Dapeng New District. 
 

 

 
Vector 

only 
Spatial Unit only Both 

processing time 

for a single data 

tuple (ms) 

0.135 0.007 0.029 

Accuracy (%) 100 79 96 

Table 3. Efficiency of location anomaly detection algorithm. 

 
Figure 6. Collision risk points for provincial roads. 

3.2.4 Analysis of Algorithm Performance. In the performance 
evaluation system of real-time computing systems, throughput 
and data skewness are critical metrics. Throughput refers to the 
ability to process data records per unit of time and serves as an 
important benchmark for measuring the system's processing 
efficiency and capacity. Data skewness indicates the uniformity 
of data distribution across different computing nodes in a 
parallel computing model. By assessing these two metrics, we 
can more objectively evaluate the processing effectiveness of 
real-time computing tasks, especially when dealing with large-
scale, high-concurrency data streams. 
 

The overall throughput is calculated by dividing the total 
amount of data consumed by the distributed computing cluster 
by the duration of the program's execution. The single-node 
throughput is determined by dividing the amount of data 
consumed by a single Slot in the distributed cluster by the 
program's runtime. Data skewness is represented by the 
coefficient of variation of the data consumed by each Slot. 
Specifically, it is the standard deviation of the data consumed 
by each computational node in the cluster divided by its own 
average. The detailed calculation formulas and values are 
presented in Table 4. 

 Overall throughput 
(records/s) 

Maximum single-node 
throughput(records/s) 

Minimum single-node 
throughput 

(records/second) 
Data skewness 

Formula throughput = (data volume)/time 
std(data volume) / 

avg(data volume) 

Driving states 

identification algorithm 
25120 2855 2125 0.074 

Collision risk 

Detection Algorithm 
66164 5023 3562 0.093 

Table 4. Performance evaluation metrics. 
Overall, both algorithms achieved a throughput of over ten 
thousand records per second, which can effectively support the 
real-time analysis of large-scale GPS streams. Additionally, the 
data skewness was maintained below 0.1, indicating a relatively 
even distribution of data across the computing nodes, thereby 

decreasing the computational power loss caused by the 
"bottleneck effect." 
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4. Conclusions 

We achieved real-time analysis of the driving states of dump 
trucks based on GPS data and developed a collision risk 
detecting method, evaluating the results and performance using 
real data. As a contribution, we established a real-time vehicle 
status analysis algorithm suitable for streaming real-time 
computation, based on distributed stream computing technology 
and incorporating the principles of streaming real-time 
processing and classical algorithms. During the experimental 
process, we used a multi-layer filtering mechanism and a 
method that combines basic spatial units with vector-based 
judgments replaced only basic spatial units or vector-based 
judgments, effectively enhancing the efficiency of the analysis.  
 
However, there is still room for improvement in the proposed 
algorithm. In the process of identifying restricted areas using 
uniform-sized basic spatial units instead of vectors, only units 
of the same size were used. While adjusting the size of these 
basic spatial units can directly influence the precision of the 
analysis, it may also impact the efficiency of the algorithm to 
some extent. Utilizing variable-sized or multi-level spatial units 
could improve this issue. 
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