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ABSTRACT: 

In photogrammetry and remote sensing, disparity estimation of satellite images has been a significant and challenging task, holding 

crucial importance for research and applications in this domain. Recent years have seen substantial progress in stereo matching methods, 

but challenges remain significant in ill-posed regions. Although deep learning-based stereo matching methods outperform traditional 

approaches in terms of performance and speed, their limited receptive field makes it difficult for networks to establish long-distance 

dependencies. This poses challenges in ill-posed areas such as textureless regions, repetitive patterns, and occluded areas. This paper 

proposes an end-to-end model for high-resolution satellite remote sensing images. First, in the feature extraction stage, we use two 

independent Transformer and CNN modules to extract global and local features of stereo image pairs. Subsequently, by designing 

effective fusion strategies, we merge these two types of features to obtain richer and more accurate feature representations. Next, we 

utilize multi-scale features to construct multi-level cost volumes, supervising each level of cost volume from coarse to fine. This allows 

lower-level cost volumes to provide prior knowledge to higher-level cost volumes, guiding them to acquire richer and more accurate 

information. Finally, we employ a ConvGRU-based recurrent module in the refinement module on geometrically encoded cost volumes 

containing geometric and contextual information to iteratively update disparity maps with finer details and structures. In experiments, 

we validate our approach using publicly available datasets and compare it with traditional methods. Experimental results demonstrate 

significant performance improvements in stereo matching tasks, proving the effectiveness of our proposed method. 

1. INTRODUCTION

The estimation of disparity in satellite stereo imagery has long 

been a significant and challenging task in photogrammetry and 

remote sensing. It refers to the process of determining the three-

dimensional geometric relationships of corresponding points on 

the earth's surface using multi-angle image data obtained from 

satellites that have undergone epipolar rectification, by 

calculating the disparity information between the images. This 

process has broad applications in geographic information 

systems, urban planning, environmental monitoring, and can be 

used for digital map production, terrain measurement, resource 

management, and other areas. However, the large amount of data 

brought by high-resolution imagery and the presence of ill-posed 

areas such as common textureless, repetitive textures, and 

occlusions in satellite images pose numerous challenges for 

depth estimation in satellite stereo imagery. 

Traditional methods typically use a four-step pipeline approach 

in stereo matching (Scharstein et al., 2001): matching cost 

computation, cost aggregation, disparity computation, and 

disparity optimization. Despite the progress made by traditional 

methods (Hosni et al., 2013; Scharstein and Szeliski, 2003)over 

the years, handcrafted features are often too simplistic and lack 

computational complexity, thus having limitations in handling 

complex situations. These limitations include a weak ability to 

handle textureless or repetitive texture regions, which often lead 

to matching difficulties, thereby affecting the accuracy of the 

matches. Additionally, traditional methods (Bleyer et al., 2011; 

Fife and Archibald, 2013) often struggle to effectively capture 

long-range dependencies, resulting in poor performance when 

dealing with large-scale and irregular surfaces. Traditional 

methods also face significant challenges in processing high-

resolution satellite remote sensing imagery due to high 

computational complexity and time-consuming operations. 

Furthermore, their dependence on manual parameter adjustment 

or heuristic methods results in a lack of adaptability and 

intelligence. Therefore, addressing these limitations, deep 

learning-based methods (Chang and Chen, 2018; Kendall et al., 

2017; Mayer et al., 2015) have gradually gained attention in 

recent years and have made significant progress in stereo 

matching. 

GC-Net (Kendall et al., 2017)is the first model to apply an end-

to-end method to stereo matching. It uses 3D convolutions to 

aggregate and regularize the 4D cost volume and employs soft 

argmin linear regression to generate the disparity map. PSM-net 

(Chang and Chen, 2018) utilizes a pyramid pooling module to 

extract multi-scale features and aggregates the cost volume using 

an encoder-decoder structure, supervised by the regression of 

multi-stage disparity maps. Although learning-based methods 

have made significant progress in stereo matching, most 

methods (Guo et al., 2019; Khamis et al., 2018) typically 

construct the 4D cost volume, requiring substantial computation 

and memory resources for 3D convolution aggregation and 

regularization. Additionally, their limited receptive field causes 

poor performance in textureless and weakly textured areas, as 

well as difficulty aligning the final disparity map with remote 

sensing images due to multiple downsampling operations during 

feature extraction. 

Recent studies (Carion et al., 2020; Liu et al., 2021; Zheng et al., 

2021) have demonstrated the advantages of Transformer in 

capturing long-range dependencies. STTR (Li et al., 2021) re-

evaluates stereo matching from a sequence-to-sequence 

perspective and replaces the construction of cost volumes with 

dense pixel matching using positional information and attention 

mechanisms. The ultimate outcome confirms the feasibility and 

effectiveness of Transformer in the field of stereo matching. 

The proposal of RAFT-Stereo (Lipson et al., 2021) has 

introduced a new perspective to stereo matching research. 
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Inspired by the RAFT (Teed and Deng, 2020), it iteratively 

updates the disparity map along the coarse-to-fine pipeline and 

employs a ConvGRUs as the core unit. Utilizing a lookup 

operator to retrieve features from the correlation cost volume 

within the current disparity range, it effectively updates the 

disparity map, thereby contributing to advancements in stereo 

matching research. 

While these studies (Teed and Deng, 2020; Zheng et al., 2021) 

have significantly advanced stereo matching, satellite images 

present unique challenges due to their different acquisition 

characteristics, leading to more prevalent ill-posed regions 

(mainly textureless areas and multi-scale objects, as well as the 

preservation of edge structure details). Satellite imagery (Li et 

al., 2023; Tao et al., 2020) often contains large buildings and 

objects of various scales, numerous areas with weak or repetitive 

textures, and disparities resulting from different shooting angles. 

Addressing these complex issues requires long-range 

dependency in stereo matching from remote sensing images and 

poses challenges for recovering fine details in disparity map 

edge structures. 

To address these challenges, we propose TFGR-Stereo (Stereo 

matching network with Transformer-CNN Feature Fusion and 

ConvGRU refinement for high-resolution satellite stereo images) 

in this paper. Firstly, our network employs Transformer modules 

similar to the U-net (Ronneberger et al., 2015) structure to 

extract global features and fuse them with locally extracted 

features based on CNN. This fusion captures advantages in long-

range dependencies and enriches the network with detailed 

information. Secondly, we design effective fusion strategies to 

merge different features to obtain richer and more accurate 

feature representations. Finally, we utilize an improved module 

based on ConvGRU to iteratively update the disparity map, 

thereby achieving a more refined result with better details. 

In this paper, we will revisit and summarize related work in 

Chapter 2, provide a detailed description of our network 

structure in Chapter 3, and finally present and discuss our 

experiments in Chapter 4. 

 

2. RELATED WORKS 

2.1 CNN-based Methods 

In recent years, significant advancements have been made in 

stereo matching through learning-based methods. GC-Net 

(Kendall et al., 2017), as a pioneering effort in deep learning for 

stereo matching, introduced an end-to-end approach by 

incorporating soft-argmin regression for generating the stereo 

disparity map. PSM-Net (Chang and Chen, 2018) integrated a 

spatial pyramid pooling module (Zhao et al., 2017) during 

feature extraction, effectively fusing multi-scale features and 

constructing a 4D cost volume. Subsequently, it employed a 3D 

hourglass convolutional block for cost aggregation learning. To 

alleviate computational and memory burdens, GWC-Net (Guo et 

al., 2019) employed a grouped correlation method for cost 

volume construction, grouping feature channels and computing 

their dot products sequentially. ACV-Net (Xu et al., 2024) 

addressed redundancy issues in existing methods' cost volumes, 

utilizing a subnetwork to generate attention weights for 

suppressing redundant information, thereby easing the 

regularization pressure in aggregation networks. ACV-Net (Xu 

et al., 2024) also serves as a lightweight module embeddable in 

most stereo matching frameworks. AA-Net (Xu and Zhang, 

2020) replaced 3D convolutions with an adaptive cost 

aggregation method for enhanced aggregation, employing Intra-

Scale Cost Aggregation (ISA) and Cross-scale Cost Aggregation 

(CSA) algorithms to mitigate edge-fattening in cases of disparity 

discontinuity and matching errors in textureless regions. CFNet 

(Shen et al., 2021) constructed a pyramid cost volume to narrow 

the disparity search range and refined the disparity map in a 

coarse-to-fine manner. 

In the field of stereo matching in satellite remote sensing 

imagery, there have been significant advancements in recent 

years. To address common challenges such as textureless regions, 

disparity discontinuities, and occluded areas in remote sensing 

imagery, DSM-net (He et al., 2021) proposed a dual-scale 

learning network for stereo matching, with low-level capturing 

coarse-grained information and high-level capturing fine-

grained information, aiding in matching objects at different 

scales. For simultaneous semantic segmentation and stereo 

matching tasks in remote sensing imagery, BGA-Net (Rao et al., 

2021) introduced a multi-task architecture of a bidirectional 

guidance attention network, where both tasks share feature 

information to enhance overall performance. HMSM-Net (He et 

al., 2022), on the other hand, trained the network by 

hierarchically regressing multiple disparity maps, with the low-

level cost volume providing prior knowledge to the high-level 

cost volume, guiding it to obtain richer and more accurate feature 

representations. Our approach shares conceptual similarities 

with the former methods but employs different strategies in 

feature extraction, feature fusion, and enhancement modules, 

resulting in further improvements in model performance. 

 

2.2 Transformer-based Methods 

In recent years, the exceptional performance of Transformer in 

computer vision (Wang et al., 2021; Zamir et al., 2021) has 

demonstrated their strong self-attention mechanisms' advantage 

in capturing long-range dependencies between pixels. STTR (Li 

et al., 2021) reexamined the depth estimation problem from a 

sequence-to-sequence perspective, replacing the construction of 

cost volumes with dense pixel matching using positional 

information and attention mechanisms, thereby advancing stereo 

matching. ELF-Net (Lou et al., 2023) introduced internal 

evidence fusion and external evidence fusion modules based on 

a mixed normal-inverse Gamma distribution (MoNIG) to 

simultaneously integrate multi-scale cost volume information 

and Transformer-extracted feature information, further 

enhancing disparity estimation accuracy and robustness. 

Although Transformers excel in extracting global features, they 

often overlook the detailed features needed for local regions, 

such as texture and other shallow information. To address this 

limitation, this paper introduces a novel feature extraction 

module that combines locally extracted features from CNNs 

with globally extracted features from Transformers. This fusion 

method integrates both local and global information to achieve a 

more comprehensive and accurate feature representation. 

 

2.3 Iterative Methods 

The impressive performance of iterative methods in stereo 

matching is remarkable. Inspired by the RAFT (Teed and Deng, 

2020) optical flow estimation model, RAFT-Stereo (Lipson et 

al., 2021) extends its framework to stereo matching. Initially, the 

model constructs a 4D cost volume by computing similarities 

between all pairs of pixels. Subsequently, it utilizes a lookup 

operator to retrieve iterative features from the correlation 

volume within the current disparity range, and finally updates 

disparities using a ConvGRU-based update operator. However, 

DLNR (Zhao et al., 2023) pointed out the potential loss of high-

frequency information during the iteration process and overly 

tight coupling in the ConvGRU update operator modules, 

proposing decoupled modules to mitigate these issues. On the 

other hand, IGEV-Stereo (Xu et al., 2023) argued that algorithms 

similar to RAFT-Stereo (Lipson et al., 2021) lack non-local 
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geometric knowledge when building global correlations, thus 

introducing a method that combines encoding of geometric cost 

volumes integrating geometric, contextual, and local 

information. Our study adopts the concept of geometric encoded 

cost volumes in the improved ConvGRU module, utilizing a 1/4 

resolution cost volume regularized by an hourglass aggregation 

module, facilitating iterative updates of disparities and 

generating a weighted combination necessary for final full-

resolution disparity. 

 

3. METHOD 

This chapter provides a detailed description of the network 

architecture of TFGR-Stereo (see Figure 1), and key components 

including a feature extractor based on Transformer and CNN for 

extracting and integrating feature information from images. 

Additionally, a feature fusion module is designed to effectively 

integrate multi-scale information from different levels to 

enhance overall performance. Furthermore, an improved module 

based on ConvGRU (Zamir et al., 2021) aims to address the loss 

of detailed information during downsampling, catering to the 

alignment requirements between the disparity map and reference 

image structures in depth estimation. Finally, the loss function is 

defined and optimized to guide objective optimization during the 

training process. Through a comprehensive discussion of these 

key components, we elucidate the methods and mechanisms by 

which TFGR-Stereo achieves efficient and precise depth 

estimation in stereo matching tasks for satellite remote sensing 

images. 

 
Figure1. Overview of our proposed TFGR -Stereo. TFGR-Stereo 

firstly passes the satellite remote sensing images which have 

undergone epipolar rectification into a dual-branch feature 

extraction module. This module is capable of modeling long-

range dependencies and integrating rich detailed information. 

The extracted multi-scale feature information is organized into 

multi-level cost volumes, which are then regularized in a 

hierarchical manner from coarse to fine. Finally, a refinement 

module based on ConvGRU is employed to produce the ultimate 

full-resolution disparity.  
 

3.1 Feature Extraction 

3.1.1 Channel-Attention Transformer extractor: In the task 

of stereo matching for satellite remote sensing imagery, accurate 

and comprehensive feature representation is crucial for 

subsequent steps. Most learning-based networks (He et al., 2022; 

Khamis et al., 2018) employ feature extraction modules similar 

to residual networks (He et al., 2016), but the limited receptive 

field prevents the network from capturing global information, 

which is particularly disadvantageous for satellite remote 

sensing images with numerous textureless or weakly-textured 

areas. The success of Transformer in computer vision (Carion et 

al., 2020; Liu et al., 2021) has demonstrated their advantage in 

long-range modeling, yet their computational complexity grows 

quadratically due to their self-attention mechanism. Inspired by 

Restormer (Zamir et al., 2021) and DLNR (Zhao et al., 2023), 

we have designed a channel-attention Transformer feature 

extraction module resembling a U-net (Ronneberger et al., 2015) 

structure (as shown in Figure 2) to output only the final 1/4 

resolution feature map. 

 

3.1.2 Channel Attention Mechanism: Because of the high- 

resolution nature of satellite remote sensing imagery, traditional 

Transformer modules (Carion et al., 2020; Zheng et al., 2021) 

impose significant computational burdens when processing such 

image data. To address this challenge, we introduce the CWSA 

module, derived from Restromer's MDTA module. The CWSA 

module enhances computational efficiency by linearly handling 

self-attention across channel dimensions, thereby significantly 

improving model efficiency. 

 

3.1.3 Dual-branch Feature extractor architecture: In the task 

of stereo matching for satellite remote sensing imagery, 

Transformer offers advantages in capturing global contextual 

information. However, they may overlook detailed information 

required for local regions. Maintaining sharp edges of objects of 

varying sizes and ensuring alignment between disparity maps 

and reference image structures are crucial for the final results. A 

hybrid deep neural network (Zhang et al., 2022) based on 

Transformer and CNN has been proposed for semantic 

segmentation of Very High-Resolution remote sensing images. 

In this network architecture, the encoder utilizes Transformer 

modules for global modeling, while the decoder employs CNN 

modules to restore detailed information. It is posited that 

Transformers and CNNs, due to their inherent computational 

mechanisms, each have specific strengths in information 

extraction. When integrated into a single network, these modules 

might not fully exploit their respective advantages in feature 

extraction. Additionally, satellite imagery contains rich high-

frequency information, including textures and other details. 

Integrating Transformer and CNN modules within a similar U-

net-like network structure could lead to one module failing to 

extract necessary high-frequency information. Consequently, in 

this paper we use a separate CNN feature extraction module (He 

et al., 2022) specifically for capturing local information while 

the Transformer module is used for global information 

extraction. The features extracted by each module are then fused 

and fed into a pyramid pooling module, providing a rich and 

accurate multi-level feature representation for subsequent 

processing steps. 

 
Figure2. Channel-Attention Transformer extractor. We 

construct a Transformer-based feature extraction module whose 

architecture is like U-net (Ronneberger et al., 2015). This 

module is capable of capturing global contextual information, 

providing significant advantages for satellite remote sensing 

images that contain abundant textureless or weakly textured 

regions. Additionally, it outputs feature maps at a 1/4 resolution. 

 

3.2 Feature Fusion 

In our approach, whether it is the early-stage feature fusion or 

the subsequent cost volume fusion, our design philosophy is to 

utilize the representation of global information as prior 

knowledge for local information representation and guide the 

network fusion (as shown in Figure 3). The specific structure is 

illustrated in Figure 3. Regarding the fusion of global features 

extracted by the Transformer and local features extracted by 
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CNN, we first concatenate these two types of features along the 

channel, then generate channel attention vectors through a series 

of processing layers. These vectors are softmax-normalized to 

ensure their sum is equal to 1. Next, we multiply the global 

features extracted by the Transformer with the front half of the 

channel attention vectors, and multiply the local features 

extracted by CNN with the latter half of the channel attention 

vectors. Finally, these two parts are added together to obtain a 

rich and accurate feature representation, which is then fed into 

the subsequent pyramid pooling module for further processing. 

As for the cost volume fusion, we initially perform bilinear 

interpolation on the low-resolution cost volume to upsample it 

to a higher scale consistent with adjacent cost volumes. Then, 

similar to the feature fusion operation mentioned above, we 

ensure that the fused cost volume retains rich information and 

provides precise multi-scale representations for subsequent steps. 

 
Figure3. First, the low-level features are concatenated with the 

high-level features and then fed into a convolutional processing 

layer for mapping. After undergoing a series of operations, such 

as global pooling, attention weights a and b are generated whose 

sum is 1. Subsequently, these two types of features are multiplied 

by their corresponding attention weights and then added together 

to produce a more accurate and detailed feature representation. 

 
Figure4. We use the regularized 1/4 resolution cost volume as 

the geometric encoding volume and take its generated disparity 

as the initial disparity. Subsequently, we apply the refinement 

module based on ConvGRU for iterative updates and utilize the 

generated weights to output the full-resolution disparity map. 

 

3.3 ConvGRU-based Refinement Module 

Following multiple layers of hourglass-shaped cost aggregation 

(Chang and Chen, 2018) and fusion modules, initial resolution is 

achieved. Due to the high resolution of satellite remote sensing 

imagery, to alleviate computational and memory burdens, we 

process feature information fused from Transformer and CNN 

through a series of operations, mapping it to hidden layer 

information required for iterative modules. The normalized 1/4-

resolution cost volume, containing both geometric and 

contextual information, serves as the geometric encoding cost 

volume (Xu et al., 2023). The resulting disparity map, derived 

from this, serves as the initial disparity map, both of which are 

fed into an iterative module based on ConvGRU (Lipson et al., 

2021). Unlike iterative methods such as RAFT-Stereo (Lipson et 

al., 2021), where ConvGRU-based update operators iteratively 

refine disparities to generate weighted combinations needed for 

the final full resolution, our design is more streamlined and 

lightweight. During each iteration, search operators retrieve 

iterative features from the geometric encoding cost volume 

based on the current disparity, enriched by regularization and 

fusion. This ensures that the cost volume not only contains 

geometric information but also richer global context, enabling 

search operators to precisely supplement the necessary details 

for the final disparity map alignment with the reference image 

structure. 

 

3.4 Loss Function 

The disparity regressed by the hierarchical multi-scale cost 

volumes are optimized using Smooth L1 Loss: 

 

  𝐿 =
1

𝑁
∑𝑖=1

𝑁 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑑𝑔𝑡 − 𝑑𝑖)  (1) 

 

where 𝑁 represents the total number of valid pixels,𝑑𝑔𝑡 denotes 

the ground truth, and 𝑑𝑖 signifies the predicted disparity value. 

The hierarchical total loss is the weighted sum of the disparity 

losses at each branch: 

 

  𝐿ℎ = 𝜆1𝐿1 + 𝜆2𝐿2 + 𝜆3𝐿3   (2) 

 

For the disparity generated by the refinement module based on 

ConvGRU, we utilize the following equation to compute the loss 

(Lipson et al., 2021): 

 

  𝐿𝑟𝑒𝑓𝑖𝑛𝑒 = ∑𝑖=1
𝑁 𝛾𝑁−𝑖‖𝑑𝑔𝑡 − 𝑑𝑟𝑒𝑓𝑖𝑛𝑒‖，𝑤ℎ𝑒𝑟𝑒 𝛾 = 0.9  (3) 

 

Where 𝑁  denotes the total number of valid pixels, and, 

according to empirical experience, 𝛾 is set to 0.9, 𝑑𝑔𝑡 represents 

the ground truth, and 𝑑𝑟𝑒𝑓𝑖𝑛𝑒 signifies the predicted disparity 

value by ConvGRU-based refinement module. 

The total loss is defined as: 

 

  𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿ℎ + 𝜆𝐿2   (4) 

 

Where 𝜆 represents the loss weight, used to balance the learning 

between the refinement module and the hierarchical branches. 

 

4. EXPERIMENTS 

4.1 Evaluation Metrics 

We employ the average endpoint error and the fraction of 

erroneous pixels as the evaluation criteria for this experiment. 

The specific evaluation equations are presented as follows: 

 

𝐸𝑃𝐸 =
1

𝑁
∑𝑘∈𝑇|𝑑𝑔𝑡 − 𝑑|  (5) 

 

              𝐷1 =
1

𝑁
∑𝑘∈𝑇[|𝑑𝑔𝑡 − 𝑑|]  >  𝑡  (6) 

 

The number N represents the number of valid pixels, and T 

denotes the collection of pixels within a given threshold. The 

symbols 𝑑𝑔𝑡and d correspond to the ground truth and network-

predicted disparities, respectively, while t stands for the disparity 

error threshold, typically set at 3. 

 

4.2 Dataset 

GaoFen-7 (He et al., 2022) is an open dataset designed for high-

resolution satellite image stereo matching, comprising 490 

image pairs that have been rectified using ground control points 

and annotated with ground truth labels. Among these, 400 image 

pairs are allocated for training, while the remainder are used for 

validation and testing. Each image in this dataset is a single-

channel image with a depth of 16 bits and a resolution of 1024
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×1024 pixels. Disparity maps are stored as 16-bit floating-point 

values, covering scenes from various Chinese cities and 

surrounding areas. These images depict diverse and complex 

environments with objects of different sizes (as illustrated in 

Figure 5), including buildings, roads, water bodies, and forests. 

Due to variations in lighting and angles during acquisition, 

regions of ambiguity are prevalent, posing challenges for models. 

Fig. 5 shows there examples of GaoFen-7 dataset. 

 
(a)                                (b)                                (c) 

Figure 5.The examples of the GaoFen-7 dataset. (a) left images; 

(b) right images; (c) ground-truth disparity maps  

 

4.3 Implementation Details 

 We implemented TFGR-Stereo using PyTorch and conducted 

experiments on an NVIDIA RTX 4090 GPU. Due to the iterative 

nature of our model compared to other methods, during the 

training of the Transformer module, we employed an end-to-end 

Adam optimizer (β1 = 0.9, β2 = 0.999). The network was 

initialized with pre-trained weights from HMSM-Net (He et al., 

2022) and trained for 100 epochs with an initial learning rate of 

0.001, halving it every 10 epochs. For training the ConvGRU-

based refinement module, we adopted a strategy of freezing the 

model parameters initially, utilizing the AdamW optimizer with 

an initial learning rate of 0.0002, and performing a total of 

2000K training steps. Subsequently, we unfroze the parameters 

to involve the entire model in training for an additional 2000K 

steps. For the GaoFen-7 dataset, we normalized input images to 

a pixel intensity range of -1 to 1 for data preprocessing. To 

preserve high-frequency information in images and maintain 

object integrity, normalized image pairs of size 1024×1024 

were directly input into the network without cropping or resizing 

during training, and no data augmentation was applied. The 

disparity range for GaoFen-7, based on disparity distribution, 

was set to [-112, 16). Empirically, the loss weights λ1, λ2, λ3, 

and λ were set to 0.5, 0.7, 1.0, and 0.6, respectively. 

 

4.4 Results 

Table 1 presents a comparison of EPE and D1 metrics on the 

GaoFen-7 test set. It is evident that our method outperforms 

traditional approaches by a large margin, and achieves state-of-

the-art performance among learning-based methods. Compared 

to HMSM-Net (He et al., 2022), our proposed method surpasses 

it by 8.41% in terms of the D1-all metric. The examples shown 

in Figure 6 and Figure 7 fully demonstrate the superiority of our 

proposed network. Intuitively, we can observe that our network 

predicts excellent disparity results in textureless areas such as 

building rooftops and forests. Moreover, in the case of multiple 

objects, edge predictions are also remarkably smooth. In satellite 

remote sensing imagery, the presence of abundant common 

urban objects such as roads, buildings, and forests often leads to 

the problem of thickening edges. However, as indicated in 

Figure 6 and Figure 7, the road marked in the image shows that 

the edges predicted by our network are very sharp, resulting in a 

well-aligned predicted disparity map with the original image 

structure. All these results strongly validate the effectiveness of 

our proposed module. 

 

Network EPE D1 

DenseMapNet 3.066 35.01 

StereoNet 2.091 21.07 

PSMNet 1.971 18.62 

HMSM-Net 1.762 14.74 

TFGR-stereo 1.702↓ 13.40↓ 

Table 1.  Quantitative comparison of different methods on the 

GaoFen-7 testing set. 

 

4.5 Ablation Study 

To validate and better comprehend the effectiveness of the 

proposed modules, extensive ablation experiments were 

conducted on the GaoFen-7 dataset, maintaining consistency in 

the setting of all hyperparameters with the aforementioned 

training. Detailed results are presented in Tables 2 and 3. 

 

Model 

Channel-

Attention 

Transformer 

Extractor 

ConvGRU-

based 

Refinement 

Module 

GaoFen7 

EPE    D1 

baseline   1.762      14.7 

Net-V1 √  1.719      13.4 

Net-V2  √ 1.747      13.6 

Net-full √ √ 1.702↓ 13.4↓ 

Table 2.  Ablations on different modules of our proposed model 

 

4.5.1 Channel-Attention Transformer extractor: The 

Channel-Attention Transformer feature extractor (Zamir et al., 

2021) alleviates the challenge of large textureless regions 

present in satellite remote sensing images due to buildings, water 

surfaces, and flat areas. It demonstrates significant 

improvements in ablation experiments (as shown in Table 2), 

which validate the advantage of Transformers in long-range 

modeling. By applying this module only to our baseline, a 

decrease of 8.41% in D1 error is observed on the GaoFen-7 

dataset, showcasing the effectiveness of our proposed 

Transformer module in enhancing prediction accuracy. 

 

4.5.2 Dual-branch Feature extractor architecture: To 

validate the effectiveness of the dual-branch network, we 

conducted three sets of experiments (as shown in Figure 8). In 

the first set, features were extracted solely using the Transformer 

module. The second set employed a U-net (Ronneberger et al., 

2015) structure, where the encoder part used the Transformer 

module and the decoder part used the CNN module. The final set 

of experiments involved the proposed dual-branch network. 

According to the results in Table 3, comparing the first and 

second sets of experiments confirms the effectiveness of feature 

extraction with the CNN module, suggesting that despite the
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Figure 6. Visualization examples of disparity estimation results on the GaoFen-7 testing set generated by different methods. From left 

to right: left image, ground truth, DenseMApNet, StereoNet, PSMNet, HMSM-Net, our TFGR-Stereo. 

 
Figure 7. Visualization examples of disparity estimation results on the typical regions generated by different methods. From left to 

right: buildings, roads, forests. From top to bottom: left image, ground truth, DenseMapNet, StereoNet, PSMNet, HMSM-Net, and our 

TFGR-Srereo. 

 
Figure 8. Visualization examples of disparity estimation results on the GaoFen-7 testing set. From Top to bottom: left image, ground 

truth, V1 (only use Transformer modules), V2(structure like U-net where encoder uses Transformer modules and decoder uses CNN 

modules), V3(dual-branch network we propose in this paper). 
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advantage of Transformers in extracting global features, they 

may overlook local regions. In contrast, the CNN module, based 

on window-based computation, can compensate for the 

drawbacks of Transformers in handling local regions, resulting 

in better performance when processing areas rich in texture 

details. By comparing the results of the second and third sets, the 

effectiveness of our proposed dual-branch network is fully 

demonstrated, confirming the respective strengths of the 

Transformer and CNN modules in extracting global and local 

features. The design of the dual-branch network allows both the 

Transformer and CNN modules to utilize the high-frequency 

information from the reference image, independently extracting 

effective and accurate feature representations. These 

representations are then fused efficiently in the feature fusion 

module to obtain feature representations rich in global and local 

contextual relationships, further enhancing network 

performance. 

 

Structure 
GaoFen7 

EPE D1 

V1 1.857 15.7 

V2 1.800 15.0 

V3 1.702↓ 13.4↓ 

Table 3.  Ablations on different structures of our proposed 

feature extractor Where V1 represents the structure only by 

Transformer, V2 represents the structure like U-net where the 

encoder utilizes Transformer modules while the decoder 

employs CNN modules, and V3 is the dual-branch network 

proposed in this paper. 

 

4.5.3 ConvGRU-based Refinement Module: The effectiveness 

of the ConvGRU module is demonstrated through ablation 

studies in this paper. As shown in Table 2, the refinement 

module based on ConvGRU (Lipson et al., 2021) significantly 

improves the accuracy and precision of disparity 

estimation(Compared to the baseline network, our proposed 

module achieved a 7.48% reduction in the D1 metric on the 

Gaofen-7 dataset). Additionally, it addresses the issue of 

disparity inconsistency caused by multiple objects in satellite 

imagery and ensures alignment between the disparity map and 

the reference image structure. We utilize the regularized 1/4 

resolution cost volume as the geometric encoding cost volume 

(Xu et al., 2023), which extracts effective and accurate non-local 

information and scene prior knowledge. These feature 

representations effectively enhance the accuracy of disparity 

prediction. Furthermore, during training, the initial disparity 

predicted by the geometric encoding cost volume is used as 

supervision for the ConvGRU refinement module. This strategy 

accelerates module training and optimization while reducing the 

training pressure on the network, resulting in a more concise and 

lightweight overall structure. At each iteration, the lookup 

operator retrieves iterative features from the geometric encoding 

cost volume based on the current disparity within a predefined 

range. With this mechanism, the lookup operator (Lipson et al., 

2021) accurately supplements the detailed information required 

for the final disparity, ensuring perfect alignment between the 

final disparity map and the reference image structure. 

 

5. CONCLUSIONS 

In this paper, we propose a novel end-to-end deep learning 

network named TFGR-Stereo for disparity estimation in high-

resolution satellite stereo images. The Transformer-based 

feature extractor captures global features, while a dual-branch 

architecture and effective fusion strategies provide the network 

with rich pyramid feature representations. Additionally, the 

network hierarchically learns stereo matching from coarse to 

fine scales through supervision applied at each scale. Finally, a 

refinement module based on ConvGRU is employed for fine-

tuning the disparities. Leveraging these strategies, HMSM-Net 

demonstrates outstanding disparity estimation capabilities. We 

evaluate our network on the GauFen-7 dataset. Experimental 

results, along with comparisons to several state-of-the-art 

methods, demonstrate the superior performance of our approach 

and improved quality of disparity estimation in challenging 

regions. Furthermore, comprehensive ablation studies validate 

the effectiveness of the proposed modules. 
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