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ABSTRACT: 

Vectorization of orthoimages of Cultural Heritage sites requires a considerable amount of time and constant supervision by qualified 

professionals. In addition, this 2D architectural drawing creation requires expert knowledge for appropriate interpretation of the 

orthoimages. In this paper, the use of conditional adversarial networks as a solution to orthoimage-to-drawing translation problems is 

proposed. The presented work exploits a state of the art conditional Generative Adversarial Network with a Markovian discriminator 

and modifies it using a ResNet fully convolutional network as generator in order to deliver reliable and accurate 2D architectural 

drawings in a binary image format. Following the 2D drawing image generation, their automated conversion into vector files is 

performed through a vectorization function, giving also the possibility to edit and scale the edges. Experimental results over two 

different Cultural Heritage test sites demonstrates that this approach is highly effective at synthesising 2D architectural drawings from 

orthoimages in great detail and reliability by learning the interpretation performed by the expert architects during the vectorization 

process. 

1. INTRODUCTION

For centuries, construction or indeed conservation works were 

based on drawings, architectural or technical drawings on paper 

or other flat surfaces. 2D architectural drawings are important 

because they are used to communicate the technical details of a 

project or a construction in a common and universally 

understandable format. Up to now, drawings are printed, mainly 

on paper sturdy enough to be handled outdoors and be resistant 

to natural phenomena. In recent years however, digital 

technology has advanced remarkably and consequently all 

drawings, 2D or even 3D, are produced and disseminated in 

digital form. Either in vector or raster format, 2D drawings can 

nowadays be displayed on flat screens of laptops, tablets or even 

smartphones. However, this display does not fully appeal to field 

experts as expected. Digital screens are not displaying correctly 

under sunlight and are difficult to handle and make quick notes, 

although theoretically all pertinent tools are there. The primary 

role or function of working drawings is to convert design data 

into construction information and to clearly communicate that 

information to building industry, code officials, product 

manufacturers, suppliers, and fabricators. Keeping track of 

modifications and/or additions during documentation is a 

necessary step in getting an accurate drawing set for the working 

system. These drawings are a valuable resource for maintenance 

and troubleshooting. The drawings, however, must be maintained 

after documentation if they are to continue to be useful. Hence, 

2D drawings are still necessary and required, as by creating a 

drawing than simply presenting captured 3D data set an 

interpretation of the subject can provide: 

● Accessible, platform independent, information.

● Reliable perception of scale, a printed plot, either

dimensioned or with a scale, allows consistent shared experience

of information.

* Corresponding author 

1https://billboyheritagesurvey.wordpress.com/2022/09/23/on-draughtsmanship-and-the-2and-a-half-d-world/ 

● Completeness with added structural detail in context.

● Simplicity by showing selected information pertinent to a

given project.

● Clarification of complex 3D spaces by use of plan, section or

perspective views.

● Architectural understanding by showing forms clearly as they

relate to style or typologies without distortion.

● Legally immutable records in cases such as planning

applications and construction contracts1.

Finally, completeness in a drawing requires careful examination 

of the structure not covered by surface recording methods like 

photogrammetry or laser scanning. Automated architectural 

drawing producing approaches shrink the laborious process of 

manually producing the vector drawings and provide ample time 

for in situ control, updating, and understanding of structure. Such 

an automated approach is presented and evaluated in this paper 

by exploiting conditional adversarial networks as a solution to 

orthoimage-to-drawing translation problems. Following the 2D 

drawing image generation, their automated conversion into 

vector files is performed through a vectorization function. The 

rest of the paper is structured as follows: Section 2 presents a 

brief review of the literature. Section 3 describes the proposed 

methodology while section 4 presents and analyses the 

performed experiments. Section 5 comments on the results of the 

method and concludes the paper. 

2. RELATED WORK

Considering that the translation of an orthoimage into 2D 

drawing falls into the general problem of edge detection, a brief 
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overview of the related work on 2D edge detection as well as in 

conditional GANs is given next. 

2.1 2D Edge Detection 

Significant local changes in the image intensity, usually 

associated with a discontinuity in either the image intensity or the 

first derivative of the image intensity are called edges and are 

important features for image analysis. They typically occur on 

the boundary between two different regions in an image and can 

be defined as a set of connected pixels that form a boundary 

between two regions. Due to its importance, edge and contour 

detection and mainly 2D edge detection is a fundamental 

computer vision problem. Early approaches on edge detection, 

such as Sobel (Sobel et al., 1968), Prewitt (Prewitt et al., 1970), 

Scharr (Kroon, 2009), Kirsh (Kirsch, 1971), MarrHildreth (Marr 

and Hildreth, 1980), and Canny (Canny, 1986) used handcrafted 

features. Most recently, convolutional neural networks (CNNs) 

have been applied to the edge detection problem, delivering 

better results compared to the traditional approaches (Xie and Tu, 

2015; Poma et al., 2020; Su et al., 2021). A major success of this 

kind of work is Holistically-Nested Edge Detection (HED) (Xie 

and Tu, 2015), a CNN model that achieves near-human edge 

detection accuracy on standard datasets. In recent years, 

automatic feature learning by CNNs has replaced explicit edge 

detection for higher-level vision tasks like image classification 

(Cosgrove and Yuille, 2020). However, it is well known that 

CNNs learn edge-like features implicitly (Krizhevsky et al., 

2012).  

2.2 Conditional GANs 

GANs have been vigorously studied in the last years, especially 

to formulate image synthesis problems. Earlier papers have 

focused on specific applications, and till 2017 it has remained 

unclear how effective image-conditional GANs can be as a 

general-purpose solution for image-to-image translation. 

Conditional GANs (Figure 1) are different in that the loss is 

learned, and can, in theory, penalise any possible structure that 

differs between output and target (Goodfellow et al., 2020, Mirza 

and Osindero, 2014, Isola et al., 2017). This way, conditional 

image synthesis allows users to use their creative inputs to control 

the output of image synthesis methods.

Figure 1. Conditional GAN (cGAN) model architecture followed in this work. The discriminator, D, learns to classify between fake 

(synthesised by the generator) and real {image, drawing} tuples. The generator, G, learns to fool the discriminator. Unlike an 

unconditional GAN, both the generator and discriminator observe the input label. 

3. METHODOLOGY

Instead of exploiting edge detection algorithms, the methodology 

presented is based on a conditional GAN (Figure 1), since it 

would fit better to orthoimage-to-drawing translation problems 

such as the one discussed in this paper, by learning the necessary 

generalisation-interpretation performed when vectorizing 

orthoimages of Cultural Heritage sites by qualified professionals. 

In the same problem, an edge detector would deliver all the 

visible edges which is out of the scope of this work. In the 

literature, conditional GANs are being used mostly for edges to 

photo translation (Isola et al., 2017) and not the opposite direction, 

as performed in this paper. Following cGAN results, processing 

of the generated 2D drawing images is finished by converting 

them from visual data, to vector, through a function to convert 

raster information to vector. 

3.1 Conditional GAN 

GANs are generative models that learn a mapping from random 

noise vector z to output image y, G : z → y (Goodfellow  et al., 

2020). In contrast, conditional GANs (cGANs) learn a mapping 

from observed image x and random noise vector z, to y, G : {x, z} 

→ y. The generator (G) is trained to synthesise outputs that

cannot be distinguished from “real” images by an adversarially

trained discriminator, D, which is trained to do as well as possible

at detecting the generator’s “fakes” (Isola et al., 2017) . This

procedure is illustrated in Figure 1. In the following sections

details about the Generator and Discriminator networks used in

this work are given.

3.1.1 Generator 

The methodology adopted in this work is based on the Pix2Pix 

(Isola et al., 2017) framework. However, instead of using “U-

Net”-based architecture (Ronneberger et al., 2015) as a generator, 

as in the original presented configuration of Pix2Pix, a ResNet-
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based architecture (He et al., 2016) with 6 convolutional blocks 

with skip connections is exploited here, adapted from Johnson et 

al., (2016). This change was decided after performing various 

configurations and extensive tests for this specific application, 

demonstrating that the ResNet-based architecture delivered more 

detailed and less noisy outputs. This ResNet architecture is 

implemented also in recent popular GAN models (Karras et al., 

2018, Zhu et al.,  2017, Miyato et al., 2018, Zhang et al., 2019). 

As shown in Figure 2, the generator comprises six residual blocks, 

and nearest neighbour up-sampling layers. Each residual block 

contains two convolutional layers with the skip connection, and 

a learned residue of input is added to the output to ensure the 

characteristics of original features are retained (Xia et al., 2021). 

Figure 2.  The ResNet-based generator architecture for an input 

image of 256x256 size. 

3.1.2 Markovian Discriminator 

For the discriminator, a convolutional “PatchGAN '' classifier is 

used, as in the original Pix2Pix framework, which penalises 

structure at the scale of 70x70 pixels image patches. This way, 

local statistics regarding the style of the input image will be kept 

by the network, leading to a more realistic output. Specifically, 

PatchGAN, after feeding one input image to the network, 

provides the probabilities of each N×N patch in an image being 

real or fake, but not in a scalar output. Here NxN can be different 

depending on the dimension of an input image (it is 30x30 for a 

256x256 image, see Figure 3), but each output vector represents 

70x70 patches of an input image. The discriminator runs 

convolutionally across the image, averaging all responses to 

provide the ultimate output of D. In Isola et al., (2017), it is 

demonstrated that N can be much smaller than the full size of the 

image and still produce high quality results. This smaller 

PatchGAN has fewer parameters, runs faster, and can be applied 

to arbitrarily large images. Such a discriminator effectively 

models the image as a Markov random field, assuming 

independence between pixels separated by more than a patch 

diameter (Isola et al., 2017). Therefore, this PatchGAN can be 

understood as a form of texture/style loss for maintaining the 

style of the ground truth architectural drawing (Isola et al., 2017). 

Figure 3.  Discriminator (PatchGAN) architecture with 70x70 

patches of an input image of 256x256 size. 

3.1.3 Optimization and Inference

To optimise those two networks, training proceeds in alternating 

periods as in Goodfellow  et al., (2020). One gradient descent 

step on the discriminator is followed by one step on the 

generator. During the discriminator training phase, the generator 

is kept constant. Similarly, we keep the discriminator constant 

during the generator training phase. Otherwise the generator 

would be trying to hit a moving target and might never 

converge. As suggested in the original GAN paper (Goodfellow  

et al., 2020), rather than training the generator to minimise log(1 

− D(x, G(x, z)), it is instead trained to maximise log D(x, G(x, 

z)) (Goodfellow  et al., 2020). In addition, objective (Equation 

1) is divided by 2 while optimising the discriminator, which 

slows down the rate at which it learns relative to the generator. 

Mini batch SGD is used and the Adam solver (Kingma and Ba, 

2014) is applied with a learning rate of 0.0002, and momentum 

parameters β1 = 0.5, β2 = 0.999. In inference, the generator 

network runs in exactly the same manner as during the training 

phase.  Batch normalisation (Ioffe and Szegedy, 2015) is also 

applied using the statistics of the test batch, rather than 

aggregated statistics of the training batch (Isola et al., 2017). 

This approach to batch normalisation, when the batch size is set 

to 1, has been demonstrated to be effective at image generation 

tasks in the literature (Ulyanov et al., 2016). For the performed 

experiments, a batch size of 1 is used while to retrieve the best 

optimization parameters, 69 different experimental setups were 

set and results were evaluated.  

As in Isola et al., (2017) the optimisation of the G and D can be 

expressed as: 

(1) 

In order for the generator  to be near the ground truth output L1 

is used: 

(2) 

The final objective is: 

(3) 

Where: 
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(4) 

(5) 

(6) 

(7) 

3.2 Binary Drawing Image to Vector 

Following the 2D drawing image generation by the cGAN which 

depicts the boundaries of the stones in black and stone surface in 

white, this stage achieves their conversion into vector files, which 

gives the possibility to edit and scale the edges. To this end, a 

function which converts the image information to a vector is 

implemented. This function creates vector polygons for all 

connected regions of pixels in the raster sharing a common pixel 

value, and specifically the 0 value for this paper. The function 

calculates the maximum distance between two connectable 

pixels, based on the hypothesis that the pixel height Δy and width 

Δx are the same.  Consequently gets the trajectory of the pixels 

that have value equal to 0 and saves those coordinates as points. 

Each polygon is created with an attribute indicating the pixel 

value of that polygon. A raster mask may also be provided to 

determine which pixels are eligible for processing. 

4. EXPERIMENTS

To explore the potential of the proposed approach the method is 

tested over two totally different Cultural Heritage test sites, 

forming the respective datasets described below. 

4.1 Test sites and datasets 

To demonstrate the effectiveness of the proposed methodology 

in synthesising 2D architectural drawings from orthoimages as 

well as investigate possible drawbacks and limitations, data from 

two different Cultural Heritage test sites with masonry walls were 

used. Specifically, orthoimages and drawings from Chios 

Fortress and Dafni Monastery were exploited. Those two sites are 

not only different in terms of construction era, masonry walls’ 

style and construction technique, but also in terms of data 

processing pipeline, enabling the demonstration of the 

generalisation capabilities of the approach in different domains 

(masonry walls, roof tiles etc.). 

4.1.1 Chios Fortress 

Chios is an island in the Eastern part of the Aegean Sea, 

approximately 220 km eastwards from Athens. The Medieval 

fortress of Chios covers an area of 180,000 m² and nowadays its 

walls include a residential complex with 650 inhabitants. It used 

to be the walled core of the town since the Genovese period, 

however there is evidence that the Castle had been inhabited 

since the Hellenistic years (4th c. BC), as well as during the 

Roman period and the early Byzantine years. Its walls both in 

land and at sea form an irregular pentagon, with strong bastions, 

eight of which are still preserved. For the documentation of the 

parts of interest, it was decided to employ close-range automated 

photogrammetry and image-based modelling, as well as 

terrestrial laser scanning and topographic surveys. In particular, 

the following equipment were used: An Integrated Total Station 

(Topcon GPT3003LN), a time-of-flight pulse-based 3D Laser 

Scanner (Leica Scanstation 10), two DSLR cameras (Canon EOS 

6D and Canon 80D with 8-15mm, 24mm and 18-55mm Lenses), 

and an Unmanned Aerial Vehicle (DJI Phantom 4 Pro). The 3D 

detailed textured model as well as the orthophotos of planar and 

cylindrical surfaces were generated through Agisoft Photoscan 

v.1.4.2. The overall process in this software, as is the case with

all similar ones, involves contemporary computer vision

algorithms (Structure from Motion and Multi-View Stereo)

adapted to confront the challenge of processing a huge number

of images and extracting useful metric information from them.

The orthophotos and the 2D drawings that were produced with a

GSD of 2mm, among other, include the façade of the walls at

scales 1:25 and 1:40 (Figure 4) which is the one used in this paper.

The production of the required architectural vector drawings was

mainly based on the orthophotos. These drawings were produced

by suitably tracing the orthophotos in a CAD environment, in

order to represent the masonry, the structural details and the

pathology. The initial digital images were always available to be

used for proper interpretation in dubious cases.

Figure 4. Up: Orthoimage of Chios Fortress in orthoimage 

(above) and the respective 2D architectural drawing (below). 

4.1.2 Dafni Monastery 

The Dafni Monastery is one of the two remaining excellent 

specimens of the culmination of Byzantine architecture (Figure 

5). It was built in the 11th century and is situated in the 

southeastern part of Attica near Athens.  

Figure 5. The east facade of Dafni site in orthoimage (above) 

and the respective 2D architectural drawing (below). 
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The whole monastery extends on an area of 0.7 hectares and in 

the centre of that area lies the majestic central church, the 

Katholikon. In essence it is a cross-domed octagon type of church 

extending approximately 25 x 15 m2 and 20 m in height. The 

Monastery is considered to be the Parthenon of the Byzantine era 

and is internationally protected by UNESCO. 

A complete and thorough geometric recording of the monument 

has been carried out (Georgopoulos et al. 2004). In addition it 

was decided to produce a 3D digital model based on the 

aforementioned survey. The 3D rendering could make use of all 

conventional survey measurements and digital photogrammetric 

products. These products were either raster orthoimages or vector 

drawings. The fieldwork covered approximately 30% of this time 

and for the purposes of the project around 11500 points were 

measured and 1000 photographs were taken using a Zeiss 

UMK1318 metric camera and a 6x6 analogue Hasselblad camera. 

Digital photogrammetric techniques, mostly performed on a Z/I 

SSK workstation, were employed for the production of the final 

products. Among the final products were orthophotomosaics at a 

scale of 1:25 with a GSD of 2mm and corresponding vector 

drawings produced by experts within the AutoCAD environment 

(Figure 5). 

4.1.3 Generating Pairs for Training and Testing 

To facilitate training and testing of the conditional GAN, 

consecutive non-overlapping patches of 1024x1024 pixels were 

extracted by the above data and training and testing data were 

generated in the form of pairs of images (Figure 6). 

Figure 6. Example of 1024x1024 data creation. The pair 

consists of the orthoimage (left) and the 2D drawing made by an 

expert architect (right). The first row depicts a pair from Chios 

Fortress while the second row a pair from Dafni Monastery, and 

specifically the roof tiles. 84 pairs were generated for the Chios 

Fortress dataset in total while for the Dafni Monasteri 33 pairs. 

4.2 Experimental Results 

To demonstrate the capabilities of the proposed methodology as 

well as identify any possible limitations, seven different training 

and testing approaches with different configurations were 

performed (Table 1). This way, the amount of the necessary data 

per dataset as well as the domain adaptation capabilities were 

investigated.  

The rationale behind training only on the 20% of the available 

data is that when having a big amount of data to vectorize, an 

expert could vectorize some of these and let the network 

vectorize the rest. The rationale behind training in one site and 

testing in another is to evaluate the domain adaptation and the 

generalisation possibilities of the trained networks: having a 

model trained on one site, vectorizing an orthoimage of another 

site, without fine tuning the model on the target site. 

Approach 

# 

Data for training 

% of images used

Data for testing 

% of images used

1 Chios 80% Chios 20% 

2 Chios 50% Chios 50% 

3 Chios 20% Chios 80% 

4 Chios 100% Dafni 100% 

5 Dafni 100% Chios 100% 

6 Dafni 80% Dafni 20% 

7 Chios+Dafni 80% Chios+Dafni 20% 

Table 1. The different test and training approaches performed. 

In the figures below, results of the most characteristic training 

and testing approaches are presented in order to illustrate the 

accuracy of the trained models as well as the cases that they 

slightly fail due to special characteristics of the input imagery. 

4.2.1 Train on 20% and test on 80% of Chios dataset 

In this section, results over the test site of Chios are presented. 

Specifically, to train the model, 20% of the images were used 

while testing is performed on the rest 80% of the data, being 

unseen by the model during training. 

      orthoimage  gt drawing  predicted drawing 

Figure 7. Example results on Chios dataset. The left column 

depicts the RGB image, the middle column depicts the ground 

truth (gt) 2D drawing, and the right column depicts the 

predicted 2D drawing vectorized. 

4.2.2 Train on 20% and test on 80% of Dafni dataset 

In this section, results over the test site of Dafni are presented. 

Specifically, to train the model, 20% of the images were used 

while testing is performed on the rest 80% of the data, being 

unseen by the model during training. 
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      orthoimage     gt drawing  predicted drawing 

Figure 8. Example results on Dafni dataset. The left column 

depicts the RGB image, the middle column depicts the ground 

truth (gt) 2D drawing, and the right column depicts the 

predicted 2D drawing vectorized. 

4.2.3 Train on Chios and test on Dafni dataset 

In this section, results over the test site of Dafni are presented. 

Contrary to the aforementioned approaches, to train the model 

here, 100% of the Chios images were used while testing is 

performed on the Dafni data, being unseen by the model during 

training, in order to demonstrate and evaluate the generalisation 

potential of the model. 

      orthoimage  gt drawing  predicted drawing 

Figure 9. Example results on Dafni dataset. The left column 

depicts the RGB image, the middle column depicts the ground 

truth (gt) 2D drawing, and the right column depicts the 

predicted 2D drawing vectorized. 

4.2.4 Train on Dafni and test on Chios dataset 

In this section, results over the test site of Chios are presented. 

Contrary to the aforementioned approaches, to train the model 

here, 100% of the Dafni images were used while testing is 

performed on the Chios data, being unseen by the model during 

training, in order to demonstrate and evaluate the generalisation 

potential of the model once again. 

      orthoimage  gt drawing  predicted drawing 

Figure 10. Example results on Chios dataset. The left column 

depicts the RGB image, the middle column depicts the ground 

truth (gt) 2D drawing, and the right column depicts the 

predicted 2D drawing vectorized. 

4.2.5 Train on both Chios and Dafni and test on both 

      orthoimage  gt drawing  predicted drawing 

Figure 11. Example results on Dafni (first row) and Chios 

(second row) datasets. The left column depicts the RGB image, 

the middle column depicts the ground truth (gt) 2D drawing, 

and the right column depicts the predicted 2D drawing 

vectorized. 

4.3 Visual Evaluation 

Results of the above experiments suggest that the network 

achieves very realistic results, even when trained in one dataset 

and tested on another. Most common errors found here are in 

areas with plasters where distinguishing stones’ edges is very 

difficult. Also, it is noticed that the network sometimes delivers 

edges from rock details and not their boundaries. Also, when the 

limits of the rocks were not clear enough, the network failed to 

deliver an edge, resulting in leaving some rocks with an “open” 

polyline. Surprisingly enough, results from the tests performed 

by training the model in one dataset and testing on another 

demonstrated the generalisation and domain adaptation 

possibilities, since the model worked even though it was trained 

in different sensor data,  different architectural style and different 

characteristics (shape, colour etc.) of the stones. 
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4.4 Questionnaire-based Evaluation 

Except for the visual evaluation performed by the authors, 

evaluation was also performed by the end users and professionals 

i.e. architects and archaeologists. To that direction, a

questionnaire was prepared and sent to 75 experts. Google Forms

platform was used to create the questionnaire which consists of

15 different cases/questions where respondents should choose

between the real drawing made by an architect and used as a

ground truth for training the cGAN models and the image

generated by the cGAN. Those two options were given randomly

as possible selections to avoid biassed replies. For each reply

where the responder selected the real drawing, one point was

given. So the closer the score to 0, the more realistic the cGAN

generated images are. Accordingly, the closer the score is to 15,

the more unrealistic the cGAN generated images are. Figure 12

depicts a case/question of the created questionnaire.

Figure 12. Example question of the created questionnaire. 

Above is the RGB image and below the respective expert-made 

and predicted 2D drawing. Responders had to select the choice 

they believe is the expert-made one. 

In the y axis of Figure 13, the number of the correct responses 

collected per responder are presented. Additionally, the average 

score was calculated equal to 6.51/15 points, the median score 

6/15 points, while the minimum and the maximum correct 

responses ranged between 0 and 13/15 points. Interestingly 

enough, those results suggest a confusion between distinguishing 

the real from synthetic drawing.  Missing columns denoting 0 

score. 

This testifies the great similarity of the cGAN synthetic 2D 

drawings to the real ones. At the same time, there are also 

observed cases of completely successful discrimination against 

them. For those cases, this remark shows that the synthetic 

images are still not perfect and need improvement. However, 

there are also apparent cases of completely unsuccessful 

discrimination. It is worth noting that in 2 questions the synthetic 

drawing prevailed over the real one by 70.66% (53 responders). 

Through the valuable discussion followed after the questionnaire, 

positive comments and conclusions were given. It was reported 

that synthetic 2D drawings are good enough and persuasive, 

making it difficult to distinguish between real and synthetic 

drawings. Also while completing the questionnaire, it was 

observed that the key element that showed the differentiation of 

the two images wasn't the edge rendering part, but the “hidden 

edges” delineation behind occlusions or  plaster, as also reported 

previously. Finally for similar future projects, the use of this 

process was considered extremely helpful since it offers 

acceptable results in repetitive segments that do not require 

special attention and potentially more information like cracks, 

damages or carvings, regarding the pathology of the depicted site, 

which is often an additional and very important purpose of 

Cultural Heritage documentation projects. 

Figure 13. The number of the correct responses collected for 

each of the 75 responders. Red line represents the average 

score. 

5. CONCLUSIONS

Main goal of the research work presented in this paper was to 

generate accurate and realistic 2D drawings from orthoimages of 

Cultural Heritage masonry buildings. To achieve that, a 

conditional Generative Adversarial Network with a ResNet-

based fully convolutional network as generator and a PatchGan 

as a discriminator were used. Extensive training and testing 

demonstrated the great potential of the proposed approach, while 

visual evaluation, questionnaire results and experts’ feedback 

indicated that the objective of this work has been primarily 

achieved.  

Indeed, using an orthoimage of a Cultural Heritage masonry 

construction, a 2D drawing of this orthoimage can be generated 

automatically and in a very short time in vector form. 

Surprisingly enough, results from the tests performed by training 

the model in one dataset and testing on another demonstrated 

high generalisation and domain adaptation possibilities, since the 

model worked even though it was trained in different sensor data, 

different architectural style and different characteristics (shape, 

colour etc.) of the stones. However, some minor flaws also exist. 

Most common errors found here are in areas with plasters where 

distinguishing stones’ edges is very difficult. In cases like those, 

some edges were not detected, resulting in gaps and 

discontinuities of the 2D drawing. Also, the network faced 

difficulties in detecting only the outer edges of the stones, 

ignoring crack, carvings etc. However, this might be considered 

also as positive, since more information is produced that perhaps 

an expert will ignore. Proposed work can be very useful when 

having a big amount of data to vectorize; an expert could 

vectorize some of these and let the network vectorize the rest or 

even data from another site, without fine tuning the model, if 

possible.  
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