
AUTOMATIC SURFACE DAMAGE CLASSIFICATION 
DEVELOPED BASED ON DEEP LEARNING FOR WOODEN 

ARCHITECTURAL HERITAGE

Jungmin Lee¹, Jeong Min Yu¹*

Dept. of Cultural Heritage Industry, Korea National University of Cultural Heritage, Buyeo, Republic of Korea 
- (20212071, jmyu)@nuch.ac.kr

KEY WORDS: Wooden Architectural Heritage, Image Classification, Convolutional Neural Networks, Deep Learning, Monitoring.

ABSTRACT:

In this paper, we propose a system that automatically classifies the surface damages of wooden architectural cultural heritage based 
on deep learning algorithms. Commonly, on-site surface damage inspections of cultural heritage are carried out manually by field 
experts. However, it is difficult to manage cultural heritage because experts are not always onsite to check for damage. To overcome 
this problem, a deep-learning-based classification method is designed to detect surface damage automatically so that cultural heritage 
monitoring can be done in real time. The dataset required for the development of the deep learning model utilized 4,000 images taken 
directly from cultural heritage sites. As a result of a comparative analysis of the performance of four deep learning models for several 
examples of wooden architectural heritage, the damage detection rate of the deep learning model built in this study showed excellent 
performance between 94.00 and 96.50%. When gradient-weighted class activation mapping is applied to visualize the damage 
detection results, the performance of the model with the best performance stood out. The results of this paper are significant as a 
basic study of the development of a real-time remote damage detection system applicable to cultural heritage sites.

1. INTRODUCTION

Cultural heritage can be damaged for various reasons over time. 
Existing studies thus far have been conducted to protect Korean 
cultural heritage, especially those consisting of paper and wood, 
as these materials are relatively vulnerable over time (Oh et al., 
2022). When 5,000 state-designated and registered cultural 
heritage articles in Korea are divided according to their materials, 
paper is the most common at 18.9%, followed by wood at 16.4% 
and stone at 14.1% (Cultural Heritage Administration of S. 
Korea, 2022). Among them, wooden cultural heritage articles are 
relatively more vulnerable to degradation factors and external 
shocks than those made of stone due to the physical 
characteristics of wood. In addition, they are directly affected by 
various damage factors existing in the outdoor environment as 
they are mainly in the form of buildings, such as palaces and 
temples. Currently, these artifacts are under the threat of rapidly 
changing environmental factors such as frequent earthquakes and 
abnormal weather on the Korean Peninsula, necessitating 
changes in the management techniques for existing outdoor 
cultural heritage sites.

With the recent emergence of advanced digital technology, there 
is a movement to digitalize the existing cultural heritage 
preservation management method based on various hardware 
and software. In the field of outdoor building safety 
management, the status of cultural heritage is regularly 
monitored using three-dimensional scanning technology (Kim et 
al., 2019). Displacement and damage studies based on digital 
shape data constructed through terrestrial laser scanning and 
unmanned aerial photogrammetry are being actively conducted 
domestically and internationally (Jaafar et al., 2017). However, 
current methods used to document and compare objects using 

three-dimensional scanning technology are limited in that real-
time measurements are impossible as the measurements are 
conducted at regular time intervals.

Several local governments have also attempted to incorporate 
ICT technology into their cultural heritage disaster prevention 
strategies over the years in an effort to establish a new cultural 
heritage safety management system. Intrusions and fires are 
detected mainly through motion detection sensors, and cracks 
and tilting are detected by attaching measurement sensors to the 
target surface (Choi et al., 2017). Beyond simply detecting 
intrusions and fires, it is necessary continuously to explore the 
trends in the amounts of damage and displacement so as to 
consider the proper types of risk situations at cultural heritage 
sites and the forms that will appear in the long term. However, in 
order to determine the current degree of damage, it is inevitable 
that some form of surface contact must be utilized on the target 
articles.

To address this issue, we propose a system for detecting surface 
damage on cultural heritage artifacts based on a deep learning 
algorithm. Since the development of the convolutional neural 
network (CNN) (LeCun et al., 1989) and AlexNet (Krizhevsky et 
al., 2012), research in this area has been actively conducted. 
Recently, the CNN was utilized in works related to cultural 
heritage, with several studies attempting to detect damage to 
cultural heritage articles using CNN-based technology (Pathak et 
al., 2021). However, there is a lack of research on monitoring 
systems feasible for use at actual cultural heritage sites, and there 
has been no research on wooden cultural heritage artifacts. In this 
paper, using a CNN-architecture-based model, we develop a 
system that enables real-time on-site monitoring and 
automatically detects damage to wooden cultural heritage. 
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Several pre-trained models are used for system development to 
verify their performance and to examine the possibility of 
applying them in the field  for use with wooden heritage 
artifacts. In particular, the main contributions of paper are as 
follows:

• We construct an image database of South Korea's wooden 
architectural heritage. Many wooden architectural heritage 
artifacts located in South Korea have been photographed under 
various illumination and angle change conditions, and these 
images are partially segmented to build deep learning models.

• We automatically detect surface damage to wooden heritage 
artifacts in real time. The proposed non-destructive damage 
detection system enables remote management and the 
continuous monitoring of these items.

• We apply recent deep learning models to the image dataset. 
Using the pre-trained models, surface damage types on test 
images are classified and the performance capabilities of the 
models are presented.

• We develop a gradient-weighted class activation map (Grad-
CAM) (Selvaraju et al., 2017) that  indicates the importance of 
each pixel in the image based on the slope value. It is applied 
to the classification result to confirm the strength of the state-
of-the-art model. Applying Grad-CAM, it is possible to 
visualize damage locations within these images. 

2. METHODOLOGY

2.1. Target Wooden Heritage

The Yeongnamnu Pavilion in Miryang is a representative 
wooden structure in South Korea and is considered one of the 
three largest pavilions in Korea both in terms of historical value 
and scale. A pavilion is a tall building of two or three stories 
without doors or walls so that visitors can see all directions for 
events or games in palaces, government offices, and castles. 
Among outdoor cultural heritage artifacts, pavilions are directly 
affected by environmental factors due to their considerable 
exposure to the atmosphere given their morphological and 
geographical characteristics (National Research Institute of 
Cultural Heritage of South Korea, 2020). Due to the structural 
characteristics of wooden buildings, if proper measures are not 
taken when the components deteriorate, structural problems can 
arise. Accordingly, detailed, daily management practices are 
required. In addition, given that most of these structures are 
made of wood, they are highly vulnerable to fires and fire 
prevention measures. Considering this, care must be taken not to 
damage them in an emergency or disaster situation.

Figure 1. Yeongnamnu Pavilion

Yeongnamnu Pavilion currently has a number of damaged 
members, and although the damage does not have a significant 
effect on the overall stability of the structure, it is a stage that 

requires careful attention for a deformed area. The main types of 
damage are cracks, exfoliation and deterioration of the columns, 
details of which are shown in Figure 2 (National Research 
Institute of Cultural Heritage of South Korea, 2018). A crack is a 
discontinuity in an architectural surface or its painting, resulting 
in a visible separation of one part from another that extends 
through one or more layers (Weyer et al., 2015). Exfoliation is a 
type of detachment totally independent of the wooden structure. 
It refers to the peeling of the wood skin parallel to the surface, 
and the thickness of the skin generally varies from the millimeter 
to the centimeter scale. Deterioration refers to decay of the wood 
when the fibers are decomposed by fungi; it is a phenomenon by 
which the wood is discolored and its strength is reduced.

Figure 2. Major types of damage at Yeongnamnu Pavilion

The lower part of the pillar on the first floor of the pavilion lacks 
foundation stones and grounding surfaces and is in a state of 
corrosion. As a result of electro-optical wave measurements of 
the deformation behavior of the top and bottom columns, 
progressive deformation in a certain direction was not confirmed 
(National Research Institute of Cultural Heritage of South Korea, 
2018). Because most of the deformation behavior measured for 
one year converges to the initial value with a change of around 1 
to 2 mm in the final value, thus far it is difficult to find abnormal 
deformation of the column. The current level of crack occurrence 
is not to the extent that it affects the overall amount of 
displacement of the building, but continuous monitoring is 
required because the possibility that the deformation behavior 
will proceed more rapidly in the future cannot be ruled out.

2.2. Image Dataset

To train a CNN model, first we construct an image dataset. 
Because wooden cultural heritage artifacts have different 
characteristics depending on the culture and region, it is 
necessary to establish training image data that pertains to Korean 
wooden cultural heritage artifacts. In that there is no existing 
image dataset of cultural heritage with which to train a CNN 
model, a wooden cultural heritage database in Korea is 
constructed. Based on the constructed image dataset, we design 
and train a model specialized for Korean cultural heritage.

A training dataset is built with actual still images of architectural 
cultural heritage taken with a digital camera. The training dataset 
targets Korean cultural heritage, but it excludes special cases 
such as those in which traditional pigments are not utilized 
during the painting of the artifact or where columns are 
rectangular. The testing dataset is extracted from CCTV images 
of the pillars of Yeongnamnu Pavilion, the target of the 
experiment. All of the individual image data instances were taken 
under various weather conditions, but dark images acquired at 
night are not used in the experiment.

The constructed image data are classified as either normal or 
abnormal. It is difficult to distinguish whether one image 
corresponds to one type of damage because several types of 
damage appear together on the pillar surfaces of the furniture part, 
which is the center of the architectural cultural heritage. 
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Therefore, a binary classifier for determining damage is used in 
place of a multi-class classifier. Parts with good preservation 
status of the columns are sorted into the normal class, while 
parts with damaged columns are categorized as abnormal to 
delineate the dataset.

In addition, damage to columns does not cover the entire surface. 
Considering the characteristics of these types of damage, 
preprocessed images are used for learning. The pre-processing 
sequence of the training images is shown in Figure 3. By 
segmenting the actual image into patches, a more precise 
analysis becomes possible. Furthermore, the image 
segmentation method overcomes the quantitative limitation of 
the dataset without augmenting the data. Cultural heritage 
images, for which distortion of the original appearance should 
be guarded against, have the advantage of not having to be 
artificially converted by means such as simple rotation, 
enlargement, reductions, or symmetry and/or brightness changes. 
Segmenting an image naturally separates shadowed and non-
shadowed portions, thereby increasing the training data as one 
aspect of different types of image transformation that also 
mitigates the overfitting problem caused by data quantitative 
limitations.

Figure 3. Pre-processing of training images

2.3. Process of Proposed Method

Figure 4. Workflow of the proposed method

In order to enable the real-time monitoring of Yeongnamnu 
Pavilion, a CNN specialized in image analysis among deep 
learning methods is used. A CNN can be used to create a deep 
network by repeatedly arranging convolution and pooling layers 
to suit the user's purpose, ultimately positioning a fully 
connected layer to determine whether or not the column is 

damaged (Krizhevsky et al., 2012). In this paper, among 
representative CNN models, models that have recently performed 
well in the field of image analysis are used in experiments to 
compare their image classification performance capabilities. Four 
models, VGG16 (Simonyan and Zisserman, 2014), 
InceptionNetV3 (Szegedy et al., 2016), ResNet50 (He et al., 
2016), and EfficientNetB0 (Tan and Le, 2019), are used in this 
paper to extract the deep features of images. The overall 
workflow of the proposed method is shown in Figure 4.

2.3.1. VGGNet

A CNN with a deep structure and a method that involves the use 
of ReLU were proposed for VGGNet (Simonyan and Zisserman, 
2014). The basic idea of VGG is to increase the non-linearity by 
stacking many 3x3 convolutional layers and adding ReLUs. 
VGGNet has a simple structure, but it is easy to learn and has 
excellent performance, and the 16-layer VGG16 structure is 
mainly used. Because VGG16 uses a small 3×3 filter in all 
convolutional layers, it can form a deep neural network and has 
high accuracy. However, there is a disadvantage in that there are 
many parameters with high memory usage.

2.3.2. InceptionNet

Inception is a network published by Google that is known as 
GoogLeNet (Szegedy et al., 2016). The core idea of Inception is 
a reduction in the number of parameters by decomposing 
convolution and reducing the amount of computation, thus 
enabling rapid learning. The network was constructed via 
concatenation of the resulting values by configuring several 
small convolution layers 3×3 or 1×1 in size as a single module. 
Inception-V3 applies batch normalization and Inception module 
and changes the optimizer to the RMSProp method. Its main 
feature is that it learns by distributing very small values rather 
than using one-hot encoded values when learning correct answers.

2.3.3. ResNet

ResNet refers to a deep structured network realized by 
constructing an ensemble by stacking as many as 152 layers (He 
et al., 2016). ResNet50 is a model with 50 layers among ResNets, 
with the advantage of reducing the complexity and improving the 
recognition accuracy through a shortcut structure as the 
convolutional layers are repeated. ResNet makes it possible to 
construct deep neural networks using skip connections to pass 
inputs from previous layers to the next layer. In order to learn the 
features of a large amount of input data well, it solves problems 
such as vanishing and exploding gradients that appear as the 
layers of the CNN model deepens.

2.3.4. EfficientNet

EfficientNet uses more layers along with more receptive fields 
and channels relative to existing networks, allowing the model to 
learn the features of the images more efficiently (Tan and Le, 
2019). In the scaling-up process, a compound scaling method is 
proposed as a method of balancing the deepening and widening 
the network in three dimensions while maintaining the accuracy 
and efficiency and increasing the resolution of the input data. 
EfficientNet is a deep learning model that applies compound 
model scaling using a neural architecture search process, which 
serves to find a baseline network based on reinforcement 
learning.
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2.4. Experiments

Using the constructed dataset, four pre-learning models are 
trained. In total, 4,000 data instances are used in the experiment, 
created by dividing the train, test, and validation datasets at a 
ratio of 6:2:2. The numbers of specific images are summarized 
in Figure 5. All images are converted to a size of 224 x 224 in 
order to proceed with training from weights pre-learned with 
ImageNet; for the InceptionNetV3 model, they are converted to 
a size of 299 x 299. Then, preprocessing is carried out by 
normalizing the pixel values. The Adam (Kingma and Ba, 2014) 
optimizer is used as the optimizer for learning, and cross-
entropy is used as the loss function. The batch size is 32, and 30 
epochs at most are used for training. A deep learning framework 
based on the Python language is used, and a related diagram is 
shown in Figure 5. Training is conducted using an NVIDIA 
GeForce RTX 3080 graphics card in the Windows 10 
environment.

Figure 5. Overall image dataset configurations

Figure 6. Architecture of the CNN model

3. RESULTS

3.1. Performance Measures

To validate the classification accuracy, we use data from a 
randomly split test set to evaluate how well the model performed 
on new data. Data from the test set are separate from the training 
data used for training and are used only for performance 
validation. To verify the classification performance of the model, 
commonly used quantitative indicators, in this case accuracy, 
precision, recall, and the F1 score, are used (Chicco and Jurman, 
2020). Additionally, a normalized confusion matrix is presented 
to ensure the clear identification of misclassified categories.

Accuracy is the probability of how many classes have the correct 
label in the entire set, and precision is an indicator of the 
predictive ability in the set that is positively discriminated. Recall 
represents the probability of a certain number of positive classes 
in the set of total positives having the correct label. The F1 score 
is the harmonic average of precision and recall, and the 
performance when the label of the data has an unbalanced 
structure can be expressed as a single number and thus evaluated. 
The calculation formula for the performance index is expressed 
by equations (1) to (4) below.

 Accuracy = TP + TNTP + FP + TN + FN
 Precision = TPTP + FP

 Recall = TPTP + FN
 F1 Score = 2 ∗ Precision ∗ RecallPrecision + Recall

True Positive (TP) and True Negative (TN) represent the number 
of correctly predicted normal and abnormal images, respectively. 
False Positive (FP) and False Negative (FN) correspondingly 
represent the number of normal and abnormal images that are 
predicted incorrectly. The statistical metrics of accuracy, 
precision, recall, and the F1 Score can be correspondingly 
calculated via TP, TN, FP, and FN. A confusion matrix is a matrix 
that visually shows the results of the TP, TN, FP, and FN 
classifications. It shows the predictions made by the model for 
each category. Through the confusion matrix, it is possible to 
determine the classification accuracy according to whether or not 
the column is damaged, and it is possible to analyze which 
classification item the model incorrectly predicted for each item.

  3.2. Evaluation of Deep Learning Models

The accuracy of the classification of the column surface damage 
is evaluated for Yeongnamnu Pavilion in Miryang, a 
representative wooden structure in South Korea. The final 
damage image classification performance is identified through 
the derived probability value for each class. The performances of 
each of the models compared to the 800 test data instances are 
summarized in Table 1. EfficientNetB0, VGG16, ResNet50, and 
InceptionNetV3 are the top performers, in that order. The 
EfficientNetB0 model shows the highest accuracy at 96.50%, and 
the InceptionNetV3 model shows the lowest at 94.00%. Hence, 
these results indicate that the performance comparison of CNN 
models for general images such as those from ImageNet does not 
apply precisely when assessing images in a specific field, such as 
cultural heritage.

(1)

(2)

(3)

(4)
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Model VGG
16

InceptionNet
V3

ResNet
50

EfficientNet
B0

Accuracy 0.9475 0.9400 0.9462 0.9650

Precision 0.9613 0.9210 0.9660 0.9673

Recall 0.9325 0.9625 0.9250 0.9625

F1 score 0.9466 0.9412 0.9450 0.9649
Table 1. Experimental results of CNN models

 

Figure 7. Confusion matrix of the EfficientNetB0 model

According to Figure 7, EfficientNetB0, as a model for 
determining surface damage during the remote monitoring of 
wooden cultural heritage sites, is confirmed to have suitable 
classification performance. In order to interpret the 
classification performance and analyze the features that affect 
the classification results, the convolution layer of the 
classification model is visualized as a heat map using Grad-
CAM. In this paper, the strength of EfficientNetB0 can be 
confirmed when Grad-CAM is applied to the damage detection 
results. As shown in Figure 8, when Grad-CAM is applied to the 
same image, damage is not detected in the classification result 
image of the ResNet50 model, whereas damage is clearly 
detected in the classification result image of the EfficientNetB0 
model.

Figure 8. Visualization results of ResNet50 and EfficientNetB0

The four models misclassify the presence or absence of damage 
in images at an average rate of approximately 5%. As shown in 
Figure 9, the misclassified images have certain characteristics in 
common. Where the crack width is relatively narrow and short, 

where the boundary of the damaged area is not clear, and where 
the image is blurry, the model classifies the image into the 
normal category despite it belonging in the abnormal category. In 
cases in which normal images are classified as abnormal, 
recognition of a crack occurs in cases where the preservation 
state of the column is good but the grain of the wood shown in 
the image is clear. In addition, a normal case may be determined 
as abnormal depending on whether or not a shadow is cast.

On the other hand, images with obvious damage are correctly 
classified as abnormal. The crack width is wide and the color of 
the spalling area is clearly visible in such cases. Images that are 
well classified as normal have clean surfaces at all illumination 
levels. Well-classified images are not ambiguous even during a 
human inspection. As a result, the model performs well in field 
applications as a surface damage classifier for wooden heritage 
sites.

Figure 9. Classification results

4. CONCLUSION

A damage classification model based on a CNN that 
automatically detects surface damage on architectural heritage 
artifacts is proposed. In a performance verification that involved 
image data of the Yeongnamnu Pavilion in Miryang, the 
EfficientNetB0 model showed the best performance at 96.50%, 
indicating that it is possible to determine the damage of wooden 
cultural heritage sites using a CNN. This paper overcomes the 
limitation of professional personnel being unable to manage and 
supervise heritage sites continually, as the method introduced 
here detects damage in real time using images from CCTV 
devices installed at the sites. This is possible regardless of 
whether images are taken at day or night, and the method has the 
advantage of being applicable to cultural heritage sites that have 
blind spots or areas with low accessibility that may be difficult to 
discover with the naked eye.

In addition, it is possible intuitively to check the state of 
conservation of cultural heritage sites through a damage 
determination network and accumulate images at the time of the 
damage to compile a database. In emergency cases, it will be 
possible to enact an initial response and undertake appropriate 
preservation efforts based on the image database. In this way, by 
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applying artificial intelligence services to actual sites, it 
becomes possible to break away from the existing cultural 
heritage preservation system that relies on the experience and 
subjective judgments of a small number of experts, and to bring 
better efficiency in terms of time use and cost in the long run. 
This study is meaningful as a basic study of the development of 
a remote damage detection system of the type required for 
various cultural heritage artifacts that will require protection in 
the future.

For application of the proposed model to numerous architectural 
heritage sites, convergence research is needed, not only 
involving wooden artifacts but also on other materials along 
with heritage at other locations. The results of this paper also 
demonstrate the possibility of expanding the research to studies 
of cultural heritage of different types and of different materials 
and locations. For application to a wide range of cultural 
heritage, follow-up studies are also needed to test whether the 
findings pertain to features commonly identified in cultural 
heritage images. Based on this paper, the characteristics of 
useful models should be studied to develop models that are most 
suitable for cultural heritage sites and artifacts in Korea. 

A good quality dataset is essential to achieve high performance 
in extended study and to expect reliable results. In order to deal 
with about 5% of misclassification, a dataset built by thoroughly 
planning the camera shooting distance, angle, and illuminance 
in various ranges is required. Since the performance and 
accuracy of deep learning models depend on data characteristics, 
a large number of data with consistency and diversity must be 
secured. Since it takes a lot of time and expense to build dataset 
for cultural heritage, it is necessary to establish and open 
database nationally. These follow-up procedures have important 
implications for developing a remote monitoring system for 
cultural heritage.
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