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ABSTRACT: 
 
Deep Learning has been pivotal in many real-world applications (e.g., autonomous driving, medicine and retail). With the wide 
availability of consumer-grade depth sensors, acquiring 3D data has become more affordable and effective, and many 3D datasets are 
currently publicly available. 3D data provides a great opportunity for a better comprehension of the surrounding environment for 
machines. There is a growing need for innovative methods for the treatment and analysis of point clouds and for their classification. 
The complex hidden layers, which are at the basis of deep neural networks (DNNs), make it difficult to interpret these models, that 
up to a few years ago DNNs were considered and treated as black box operators. Still, with their increasing popularity, making them 
explainable and interpretable has become mandatory. A lot of efforts were devoted to developing an Explainable Artificial 
Intelligence (XAI) framework for explaining DNNs decisions with 2D data, while only a few studies have attempted to investigate 
the explainability of 3D DNNs and, even more, heritage scenarios. To overcome these limitations, it was proposed the BubblEX 
framework: a novel multimodal fusion framework to learn the 3D point features. In our work, BubblEX has been exploited to 
understand the decisions taken by DNNs for heritage point clouds. The approach has been applied to a Digital Cultural Heritage 
Dataset, which is publicly available: the ArCH (Architectural Cultural Heritage) Dataset. 
 
 

1. INTRODUCTION 

Cultural Heritage (CH), both movable and immovable, namely 
built, architectural, natural, and landscape heritage, artworks 
and objects that express beauty or cultural values, seems to be 
the center of two contradictory nodal situations. On the one 
hand, thanks to the development of digital technologies and the 
effort of national and international projects, and local 
stakeholders involved in digitalization projects, we have faced a 
constant growth of digital material in the last decades (Yu et al., 
2022). On the other hand, the current production workflow still 
limits access, generation, and use of such content (Argyrou and 
Agapiou, 2022).  
Digital material is not always easy to access due to several 
factors, including the unavailability of adequate Information 
Technology (IT) equipment and the lack of citizens’ interest and 
involvement (Bombini et al., 2022). The increasing availability 
of three-dimensional (3D) data, deriving from LiDAR (Light 
Detection And Ranging), MMSs (Mobile Mapping Systems) or 
UAVs (Unmanned Aerial Vehicles), provides the opportunity to 
rapidly generate detailed 3D scenes to support restoration, 
conservation, and safeguarding activities of built heritage. In the 
context of production, HBIM (Historic Building Information 
Modeling) constitutes a reference. Unlike the standard BIM 
(Building Information Modeling) methodology, where 
constructions are handcrafted by a designer, it applies a reverse 
engineering approach, typically relying on point clouds to 
perform the scan-to-BIM processes. These processes are still 
mostly manually carried out by domain experts (Pan and Zhang, 
2022), making the workflow very time-consuming, not fully 

exploiting the potential of point clouds to automatically derive 
parametric objects, their segmentation, eventual physical issues, 
or any related metadata. Moreover, after constructing such 
models, their use in a real-time context is limited by the 
device’s capabilities to render, transmit and analyze point 
clouds with potentially enormous sizes.  
Deep neural network (DNN) models are currently adopted in 
several domains, from medical diagnosis (Fiorentino, 2022) to 
retail (Rossi et al., 2021) due to their ability to learn meaningful 
information from data and due to their success in many 
computer vision tasks (Xiao et al., 2018), where solid literature 
in the last years showed its potential. Deep Learning (DL) can 
enable the automatic recognition of architectural elements from 
point clouds. Various 2D vision problems have been 
successfully tackled with this dominating technique in AI. 
Semantic segmentation, shape, and surface detection are well 
studied in images and have been extended to the CH domain 
(Zhang et al., 2021), with 3D shape classification (Grilli and 
Remondino, 2019), 3D object detection and tracking (Fiorucci 
et al., 2020), and 3D point cloud segmentation (Malinverni et 
al., 2019). However, DNNs on heritage point clouds are still in 
their infancy due to the unique challenges given by the order-
less nature of point clouds (Matrone et al., 2020a).  
Initially, these models were considered and treated as black box 
operators, but with their increasing popularity, it becomes 
mandatory to make DNNs explainable and interpretable. This 
issue was considered a downside of deep learning for several 
years and users are generally reluctant to use techniques that are 
not fair and trustworthy, following the European movement to 
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pursue sustainable and ethical development of Artificial 
Intelligence (AI) (Goodman and Flaxman, 2017).  
In this regard, effective and trustworthy DL algorithms are 
essential for Explainable AI (XAI). Explainability is a closely 
related concept to interpretability. Whereas interpretability 
focuses on abstract topics, explainability is the identification of 
pertinent features in the interpretable field that are important for 
accomplishing a peculiar decision (Tioa and Guan, 2020). 
Explanatory artificial intelligence tackles the critical issue that 
complex machines and algorithms often cannot provide insights 
into their behavior and thought processes. XAI allows users and 
parts of the internal system to be more transparent, providing 
explanations of their decisions in some level of detail. These 
explanations are crucial to ensure algorithmic fairness, identify 
potential biases or inconsistencies in the training data, and 
ensure that the algorithms perform as expected. 
In recent years, much effort has been devoted to developing 
XAI methods for explaining DNN decisions, especially for 2D 
data (Graziani et al., 2020). XAI techniques are based on 
saliency maps, which denote the pixels deemed essential for the 
model’s decision under consideration (Kindermans et al., 2019).  
Although there are many state-of-the-art studies on the 
exploitation of XAI techniques with 2D data (Young et al., 
2019), few works have tackled examining the explainability of 
3D DNNs (Zhao et al., 2020). In our previous work (Matrone et 
al., 2022), it has been proposed BubblEX, a multimodal fusion 
framework to learn the 3D point features, and it has been 
applied to Modelnet40 and ScanObjectNN datasets with 
suitable results. Its goal is to unfold the black box for the 3D 
point cloud features learning.  
In this paper, we started from the BubblEX framework 
(Matrone et al., 2022) to explore the field of XAI for 3D 
heritage data. Among the various state-of-the-art DNNs, the 
Dynamic Graph CNN (DGCNN) (Wang et al., 2019) has been 
selected on the basis of previous works (Matrone et al., 2020a) 
and to ensure study continuity. Nevertheless, the proposed 
approach can be extended to any other architecture, being 
independent of the type of DNN chosen.  
The DGCNN builds dynamic connections among points in their 
feature level and updates point features based on their 
neighboring points in the feature space. It has been trained on 
the ArCH dataset (Matrone et al., 2020b), in order to test the 
proposed methodology on heritage scenarios. In this context, the 
authors would like to investigate the potentialities of a domain 
shift of the XAI techniques in the cultural heritage sector, in 
addition to understanding why and how these approaches could 
be useful. Moreover, the differences between their application 
with other objects and categories are explored too. 

The specific contributions of this paper are: 
• the extension of the BubblEX framework to understand 

the process of 3D heritage point cloud features learning 
for multiclass scene understanding and interpreting; 

• the implementation of a method developed for obtaining 
saliency maps from image data to deal with 3D heritage 
point cloud data; 

• a visual method that enables analyzing and comparing 
multiple features; 

• the generation of visual explanations from any DNN-
based network for 3D heritage point cloud segmentation 
without requiring architectural changes or re-training. 

The paper is organized as follows: section 1.1 provides a 
description of the state-of-the-art approaches developed for XAI 
on 3D point clouds. Section 2 describes the methodology 
according to the three different modules of BubblEX, namely 
the Learning phase (section 2.1), Visualization module (section 
2.2), and Interpretability module (section 2.3). For better 

comprehension, the results of the Visualisation module have 
been included in the related section of the Methodology. In 
Section 3, Results and Discussions, an evaluation of our 
approach with respect to the ArCH dataset is offered, as well as 
a detailed analysis of the most relevant classes. Finally, in 
Section 4, final discussions on the obtained results are drawn, 
along with the conclusions and the definition of the future 
directions for this field of research. 
 
1.1 Related works 

In the literature, few studies have attempted to investigate the 
explainability of 3D DNNs. This section briefly reviews some 
relevant background works concerning XAI techniques for 
point cloud DNNs. 
Zhang et al. proposed an explainable machine learning method 
called the PointHop (Zhang et al., 2020). It was specifically 
designed for point cloud classification task. PointHop built 
attributes of higher dimensions at each sampled point through 
iterative one-hop information exchange. This solution was like a 
larger receptive field in deeper convolutional layers in CNNs. 
The obstacle of unordered point cloud data was addressed by 
the authors with the adoption of a space partitioning procedure. 
Besides, it was applied the Saab transform to diminish the 
attribute dimension in each PointHop unit. In the classification 
phase, the feature vector was fed to a classifier, and the 
possibility of using ensemble methods to enhance the 
classification performance was explored.  
In (Zheng et al., 2019), the authors have chosen to exploit the 
saliency map concept. In particular, they developed a saliency 
map for 3D point clouds to measure the importance of each 
point in a point cloud scene to model prediction loss. By 
approximating point dropping with a continuous point-shifting 
operation, they have shown that the contribution of a point was 
roughly proportional to, and thus can be scored by, the gradient 
of the loss with respect to the point under a scaled spherical-
coordinate system. By using the saliency map, it was possible to 
standardize the point-dropping process to verify the veracity of 
the obtained saliency map on characterizing point-level and 
subset-level saliency. 
However, the lead study on the use of XAI approaches to point 
clouds was (Gupta et al., 2020). It continues to be crucial for the 
comprehension of the feature sparsity of 3D models. The 
authors only reported sparse explanations that emphasize the 
influence of points at edges and corners, which is a lack of 
semantics, and the evaluation criterion of the explanations was 
not present. Besides, the gradient-based methods were not 
adjusted to models without gradients, such as tree-based 
models. Another evaluation approach was proposed by Adebayo 
et al. in (Adebayo et al., 2018). The authors randomized the 
network weights as well as the labels. Moreover, in their paper, 
they also stated that a feasible explanation should be sensitive to 
the weights of models and the data generating process.  
In (Tan and Kotthaus, 2022), the authors proposed a solution for 
explaining the decision of a DNN when it deals with 3D data. In 
this paper, it has been described a point cloud-applicable XAI 
method based on a local surrogate model-based approach to 
determine which components are accountable for the 
classification. Furthermore, they quantified the efficacy of the 
explanations for point cloud data through fidelity and accuracy 
verification methods instead of a subjective approach based on 
human perception. 
Considering the state-of-the-art in this context, the BubblEX 
framework comprises a visualization phase, followed by a 
recognition phase in which the important features for DNNs 
decisions are emphasized. 
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2. METHODOLOGY 

The general structure of BubblEX for learning the features of 
3D points is illustrated in Figure 1. Its structure consists of two 
modules, which follow the Learning phase: a) Visualization 
module and b) Interpretability module.  
 

 
Figure 1. BubblEX workflow. The features extracted from the 

trained DNN serve as input for the Visualization and 
Interpretability Modules. The output of these two core parts 

could help to improve network decisions. 
 
At first, a trained network on a point cloud dataset is required to 
solve a semantic segmentation task; then a method is selected 
for extracting and displaying the features learned from the 
network layers. At this stage, the insight resides on t-SNE (Van 
der Maaten and Hinton, 2008) and UMAP (McInnes et al., 
2018), which are primarily designed to group neighbouring data 
points together. Aware of their criticalities (Chiari et al., 2021), 
in this case, they are mainly used to identify intruders among 
objects (Matrone et al. 2022) or clusters of points belonging to 
single classes (semantic segmentation task), demonstrating a 
good effectiveness for the direct visualization of the critical 
issues within the classes themselves. BubblEX adapts them to 
3D point clouds. Finally, the third step is essential to understand 
the decisions made by the network to classify the features 
extracted in a given class. The union of these last two steps 
represents the fundamental fulcrum of the interpretability of the 
model trained in the initial steps. In fact, it allows to understand 
the decisional errors undertaken by the network and 
consequently could provide an idea of: a) how to improve the 
training phase, b) the accuracy of the dataset itself, and c) any 
critical issues due to the data acquisition phases. Finally, the 
Interpretability Module describes how adjacent points are 
involved in the extraction of features. For the development of 
this module, BubblEX was inspired by the Grad-CAM approach 
(Selvaraiu et al., 2017). 
 
2.1 Learning phase 

The DGCNN has been trained with different combinations of 
scenes belonging to the ArCH dataset, always excluding the test 
ones from the training and validation set. In this paper, the 
results obtained for a part of the Trento square scene (Figure 2) 
are shown. The network has been trained with the basic features 
(coordinates and RGB) in order to have a standard configuration 
similar to those of the state-of-the-art, and it performed with 
84,62% of overall accuracy and 59,8% IoU. 
The abovementioned network takes as input an n*3 tensor, 
which corresponds to the number of points in the batch (n) and 
the 3 coordinates. Each intermediate layer performs the feature 
extraction operations (n points*m features) implemented by the 
EdgeConv and Conv layers. Finally, the last layer for the 

classification (n*c), i.e. for each point, the layer assigns a vector 
of 9 elements corresponding to the likelihood of belonging to a 
class. During forward propagation, maps of activations are 
extracted, while during backward propagation, gradients are 
extracted. In particular, the gradients are computed in the last 
convolutional layer (conv8) before the output layer (Figure 3). 
 

 
Figure 2. Trento square scene plotted and visualized by the 
RGB (left), implemented Grad-CAM (in the middle), and 

ground truth classes (top right). 

 
Figure 3. Numbers from 1 to 5 show the output layers for 
feature extraction. Point 1 and 5 are those selected for the 
Visualization Module, while only 5 for the Interpretation 

Module. 
 
2.2 Visualization Module 

To visualize the features learned by the network in its hidden 
layers, the large dimensionality of the data has to be taken into 
account. The state-of-the-art dimensionality reduction technique 
is the t-Distributed Stochastic Neighbor Embedding (t-SNE): 
particularly suitable for displaying features and large data sets. 
It is often used in the image domain, but in recent years it has 
also been successfully applied to other types of data, such as 
point clouds. With respect to PCA (Principal Component 
Analysis), which is a statistical technique, t-SNE is a 
probabilistic one. One of the main issues to be taken into 
account is its computational cost when dealing with high-
dimensional data. The solution has been to apply the PCA as a 
dimensionality reduction technique, retaining at the same time 
most information. In recent years a new dimensionality 
reduction technique has been introduced, called Uniform 
Manifold Approximation and Projection (UMAP). UMAP is a 
learning technique for dimensional reduction based on 
Riemannian geometry and algebraic topology. This procedure is 
better than t-SNE in terms of reducing the dimensionality and 
display quality, as it allows for preserving most of the relations 
between the input data, providing fast processing times. These 
approaches allow understanding if the network is discriminating 
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well the different classes of the dataset within its architecture, in 
which way the network associates the wrong feature, and to 
investigate which are the closest points (consequently classes). 
Basically, each point in the dataset is associated with a feature 
vector extracted from an intermediate layer. This vector can be 
provided as input for one of these techniques, which will map it 
as a point in a 2D space. The whole test dataset will first be 
provided as input to the neural network, then transformed into 
feature vectors, and finally mapped within a two-dimensional 
space to be analyzed (Figure 4).  
 

 
Figure 4. Workflow of spatial transformations of the data flow. 
 
In detail, it starts with a 3D object which is given as a point 
cloud, with points represented as coordinates or other features. 
Within every single layer, new features are learned and defined, 
able to describe the single point with respect to its neighbors or 
the class/object in its entirety. However, the extraction of the 
features from different layers could be difficult to investigate, 
due to the n-dimensionality, therefore, they are plotted into a 2D 
space. For the extraction of the learned features, the eighth 
convolutional layer was chosen since the ninth is the output one. 
It has to be noticed that, in the case of point cloud classification, 
each point plotted in the t-SNE or UMAP corresponded to an 
object of the dataset (chair, monitor, wardrobe, plant, curtain, 
etc.) (Figure 5); while in the case of semantic segmentation, this 
kind of visualization was not possible. In fact, each class 
contains multiple objects, even separated from each other in real 
space, and it has been thus not feasible to plot the individual 
objects, within the same category, with a single point. 
Therefore, differently from what is shown in (Matrone at al., 
2022), the points of the graphs actually represent all the points 
of the analyzed test scenes. However, this does not affect the 
overall effectiveness of the proposed method since it is still 
possible to identify, if the training phase is correct, the clusters 
of the single classes.  
 

 
Figure 5. Results of t-SNE on the ModelNet40 dataset 

(classification task). Clusters have been clearly isolated, and 
within some of them (orange rectangle), “intruder” objects are 

visible, namely objects with features similar to those of the 
cluster, but predicted as another class (Matrone et al., 2022). 

 

The results of the feature visualization using the t-SNE and 
UMAP techniques are depicted in Figure 6 and 7, where the 
point color represents the class and could be plotted according 
to the comparison with the ground truth (GT) or the predicted 
class. The proximity of the points in a single cluster or area of 
the graph indicates that the features in the feature space (learned 
from the network) are similar and, therefore, able to 
discriminate the object or class properly. The presence of points 
with different colors within a cluster demonstrates how the 
object (in the case of classification) or the point itself (in the 
case of segmentation) has been incorrectly predicted since the 
features describing it are similar to those of other objects. At 
this point, it is possible to investigate the cause in two ways: a) 
with the second module of the framework, visualizing directly 
on the point cloud the parts that have been mainly considered by 
the network; b) by directly examining the object or class to 
verify the absence of errors in the initial labeling phases of the 
dataset or that potential similarity of geometries to those of 
other classes. 
If we compare Figure 5 with 6 and 7, we immediately see how 
in the case of the ArCH dataset, the final result is much more 
uneven and with clearly less defined clusters than those 
obtained with ModelNet40. The reasons are essentially two. 
First, the plotted points indicate individual points in the scene 
and not objects in the dataset, so there are more items plotted. 
Secondly, the network performances obtained with the ArCH 
dataset were lower than those obtained with ModelNet40. This 
last element is very relevant, as the difficulties and 
inhomogeneities of cultural heritage datasets are well known 
and their correct semantic classification is not straightforward 
and yet fully solved. In fact, the t-SNE and UMAP graphs of 
other 3D datasets, also addressed to the semantic segmentation 
task, gave clearer results with mainly separated clusters. 
 

 

 
Figure 6. t-SNE of the test scene of the ArCH dataset plotted 

with respect to the prediction. At the top, the features extracted 
from the first convolutional layer, and at the bottom from the 

last before the final classification. 
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In detail, from Figure 6 it can be noticed that in the initial layer, 
there are many points predicted as “other”, which are 
considerably reduced in the final layer, in which they are 
classified as different categories. This step indicates a good 
ability of the network to learn and discriminate, although not yet 
optimal. It is therefore not possible, in this case, to proceed as 
with ModelNet40, identifying the individual misclassified 
objects or points; however, it is clear that some classes such as 
“wall”, “column”, and “floor” are gradually described with 
more similar features. It can thus be assumed that the 
performance of the network can improve with a parallel 
increase of the dataset. 
 

 

 
Figure 7. UMAP of the test scene of the ArCH dataset plotted 
with respect to the prediction. At the top, the features extracted 
from the first convolutional layer, and at the bottom from the 

last before the final classification. 
 
Different results have been obtained for Figure 7, in which split 
and randomly distributed points are clearly visible. This 
behavior is intrinsically due to the technique itself, which tends 
to separate clusters more than t-SNE. From here, it is evident 
how, above all, the “molding” class is not described with 
homogeneous features, as well as the “arch”, returning, in fact, 
the worst metrics. 

 
2.3 Interpretability module 

In this module, the activations in the innermost layers are 
analyzed along with Grad-CAM. In particular, we analyze the 
activations and the Grad-CAM at the output of the penultimate 
convolutional layer conv8 before the final classifier conv9. This 
layer has a dimension of 256 features * 4096 points. 
The Grad-CAM, unlike the activation, which corresponds to the 
output of the layer as a function of the input, is parametric and 
must be calculated according to the target class. It is equivalent 
to the product between the activation and the gradient obtained 
from the back-propagation of the output (both of size 256 
features * 4096 points). To compute the gradient, a one-hot-

encoding signal identifying the target class is multiplied by the 
output vector and back-propagated to the conv5 layer in analogy 
to the error back-propagation during network training. 
This activation, namely a matrix of dimension 1024 features * 
1024 points, is then multiplied with the gradients, obtained after 
the back propagation, to get the implemented Grad-CAM results 
(Figure 8).  
The implementation of Grad-CAM for the 3D data as point 
clouds required the analysis of the best function to flatten the 
feature size, previously extracted, and the exploration of the 
best combination of activation and gradient. With respect to the 
average, the median applied to the gradient has a lower 
dispersion of the points around their central values (Matrone et 
al., 2022). This feature was then multiplied with activation to 
modulate its values (as represented in Figure 8). 
 

 
Figure 8. Interpretability module workflow. 

 
Furthermore, since the use of the median to flatten both 
activation and gradient before multiplication did not conduct to 
a proper and immediate visualization, the median has been 
applied subsequently, succeeding in determining a significant 
variation compared to those of activation alone. 
To facilitate the visualization, a colormap jet is used to 
emphasize the intensity of the values, where blue and red 
display the influential points, although their contribution is 
opposite. In fact, they map -1 and 1 respectively, while green is 
close to 0. The activations and gradients were calculated by 
iterating over the individual batch and then merging them 
together in the complete scene. Thanks to the activations taken 
in the forward propagation and the gradients extracted from the 
backward propagation, the Grad-CAM for entire scenes (Figure 
9) for each class was calculated. 
We can see how the product between the activations and the 
gradients highlights in the Grad-CAM the most considered parts 
of each class with the color red (+1) and the least significant 
parts for the classification of the same class with the color blue 
(-1) while non-influential points are represented with a color 
close to green (0). 
 

 
Figure 9. Implemented Grad-CAM for every class. 

 
3. RESULTS AND DISCUSSIONS 

The results of the implemented Grad-CAM made it possible to 
analyze the individual classes in detail and understand which 
elements the neural network considers to classify the points. 
 
3.1 Columns 

Figure 10 clearly depicts how the network locates the most 
relevant element in the shaft of the columns to distinguish this 
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class, partially omitting the capitals and the base. This behavior 
occurs both for columns with larger dimensions and with 
smaller ones, such as those of the colonnade of the upper loggia. 
In this case, the target class is 1, i.e. the columns, and both the 
GT class and the predicted one correspond to 1.  
 

 
Figure 10. Column class with shafts highlighted. Target class 1 

“Column” and GT class 1. 
 
However, if we analyze another part of the façade, we can also 
notice how some points belonging to the column class have not 
been correctly predicted (Figure 11a). In this case, it has been 
useful to see their assigned class, and it resulted in class 5 
“wall” (Figure 11b with target class 5 and predicted class 5). 
From a comparison with the RGB point cloud, it can be seen 
that these columns have not been completely reconstructed 
since the acquisition took place via terrestrial photogrammetry. 
Precisely, due to the partial absence of part of the geometry, the 
DNN could have been misled and, therefore, classified these 
columns as a wall. It is not thus a problem of learning and 
training, but of the incompleteness of the dataset, demonstrating 
how, for the column class, the partial absence of the curved 
element leads to misclassification. 
 

 
    (b) 

Figure 11 a and b. Column class with misclassified points. 
Target class 5 “Wall” and Predicted class 5. 

 
3.2 Door and Windows 

Also for this category, as for the previous one, the points 
correctly predicted with respect to GT were first considered, 
namely Target class 4 “Door-window” and GT class 4. 
Figure 12a depicts how the central part of the windows, and 
openings in general, is mainly considered by the network. The 
red vertical bands, visible in the rosette, are almost certainly due 

to the ways in which the network analyses the scene: through 
vertical blocks that may have influenced the results. Despite 
this, it is clear that the outermost parts, sometimes in masonry, 
are secondary to the attention dedicated to the flat part of the 
openings. In fact, they have also been misclassified if having a 
look at Target class 4 - Predicted class 4 (Figure 12b). This 
result could lead to state that, for this class, acquisition via 
photogrammetry (both terrestrial and aerial) could be preferable 
to the laser scanning technique, where stained glass windows 
are rarely detected. 
 

 
Figure 12. Door-Window class. (a) Target class 4 “Door-

window” and GT class 4, (b) Target class 4 - Predicted class 4. 
 
Figure 13 represents a comparison between Target class 4 - GT 
class 4 (Figure 13a) and Target class 4 - Predicted class 4 
(Figure 13b). If the central windows indicated by the red circle 
are examined, it is possible to see that they are not recognized. 
In the first analysis, it was thought that this outcome was due to: 
a) the previously described cause, i.e. the method of analysis of 
the network using vertical blocks, whereby the points of the 
window had been separated into two different blocks and, 
consequently, not recognized or b) the fact that the windows 
resided approximately on the same plane as the masonry, less 
recessed than the others, and therefore recognized as a wall. 
However, later, the point clouds and the acquired images were 
reanalyzed and it was realized that these windows were the only 
ones walled up and closed (Figure 13c), therefore, the error was 
not from the DNN but from an incorrect dataset annotation. 
Nevertheless, at this point, an open question arises: how should 
those two portions of the point cloud be annotated? Option 1: as 
windows, because they were openings and their shape is similar 
to the others, having only been walled-up? Or option 2: as wall, 
even if from a structural point of view they do not have the 
same behaviour as the adjacent masonry, thus following the 
result of the DNN? 
    

          
.              (a)                    (b)      (c) 

Figure 13. Door-Window class with highlighted the 
misclassified openings and a comparison with the real state. 

 

(a) 

(a) 

(b) 
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3.3 Arch and Stairs 

Finally, the “arch” and “stair” classes have been analyzed. For 
the first, the central and most curved parts of these architectural 
elements have been highlighted by the implemented Grad-CAM 
(Figure 14), even if the DNN is sometimes confusing most 
external parts with the “wall” class. This result is justified by 
the low presence of arches in the ArCH dataset, among the 
classes with the least number of points.  
 

 
Figure 14. Target class 0 – GT class 0 (Arch) 

 
For the second, on the other hand, equal importance was 
highlighted for the riser of the step with respect to the tread 
(Figure 15). This result could indicate how the geometric trend 
of the staircase is precisely the discriminating factor of this 
category. In fact, if only the riser were considered, it could be 
confused with a wall, if instead only the tread was considered, it 
could be misclassified with a floor, which, however, did not 
happen. 
 

 
Figure 15. Target class 6 – GT class 6 (Stairs) 

 
4. CONCLUSIONS 

In conclusion, the application of some explainable approaches 
in the field of cultural heritage can, on the one hand, share 
common points with other domains (such as robotics, retail or 
medicine), but on the other, provide new insights domain 
specific. In particular, they may be useful to understand and 
evaluate the effectiveness of the code or the kind of features 
learned and their correctness, as well as for other sectors, but 
they can, above all, allow us to understand how to effectively 
acquire the data. 
There is a plethora of tools and possibilities for surveying 
techniques, which today are integrated and combined to try to 
produce ever more complete data; however, there are situations 
in which the speed of the acquisition phases plays a crucial role. 
Examples are areas at risk (seismic, environmental or due to 
wars), where accurate survey campaigns cannot be carried out. 
In this case, knowing which are the fundamental parts or 
elements to be acquired for future automatic recognition of 
these components in augmented or virtual reality environments, 
as well as for digital reconstruction, could be of considerable 

help. Besides, the domain shift between everyday objects, such 
as those present in ModelNet40, to the point clouds of the 
architectural heritage could allow explainability techniques, in 
the next future, to fully and properly define the distinctive 
features of a heritage building, an architectural style or an 
architect, understanding their influences. In fact, their only 
application to images could be reductive, as architecture is an 
all-around work, unlike, for example, a painting (Diaz et al., 
2020). In the present contribution, the saliency maps for some 
classes have been shown, demonstrating what a DNN focuses 
on; however, it is possible to imagine that with more extensive 
data, this methodology could be precisely applied to study 
architectural styles or historical influences, determining thus 
new interconnections and knowledge. 
Furthermore, the scalability of these techniques has also been 
highlighted. In fact, to date, it has been applied to “simple” 
objects, e.g. monitors, curtains or vehicles, which usually 
maintain approximately the same dimensions. The case studies 
of cultural heritage, on the other hand, can greatly differ in size 
and geometry, even within the same category. If we consider the 
results obtained, it has been shown that the proposed 
methodology correctly works both on, for example, columns 
and openings with different dimensions but also shapes. 
The main difference that is still present today in the application 
of explainability techniques to ordinary environments or objects 
with respect to the cultural heritage domain is the limited 
presence of labeled heritage point cloud datasets. The 
heterogeneity of the point clouds of heritage scenes and the 
scarcity of available data do not yet guarantee both the 
performances achieved in the other domains and the full 
development of these techniques. 
Future development of this research will be the application of 
these approaches to heritage point clouds acquired with specific 
techniques, such as laser scanning, mobile mapping systems, 
and terrestrial or aerial photogrammetry, to understand if the 
predictions of the DDN would change according to the type of 
acquisition. 
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