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ABSTRACT: 

In the era of digital twins, high-definition 3D point clouds of cultural relics, such as the bronze drums of ancient Southeast Asia and 
China, are increasingly available as digital heritage. This study applies an automatic hierarchical clustering method to compare and 
cluster 14 unstructured 3D models of frogs on drums based on the dissimilarity metric of the minimum error from 2,000 iterations of 
global registration. Furthermore, this study compares two forms of 3D presentation: surface points and 3D shape skeletons. The 
experimental results on 14 high-definition frogs showed that four groups – three-legged with baby, four-legged with baby, three-
legged without baby, and four-legged without baby – were consistently (TPR = 0.857) detected, regardless of the 3D presentation 
using point clouds or shape skeletons. Both basic surface points and advanced shape skeleton effectively clustered 3D heritage 
details for heritage digital twins and advanced heritage documentation. The findings also imply that geospatial analytics using either 
surface 3D point clouds or skeleton can shed light on unsupervised learning and quantitative understanding of unstructured point 
clouds of numerous cultural heritages. 

1. INTRODUCTION

With the advancing remote sensing and geospatial technologies, 
cultural heritage has increasingly embraced digital modeling 
and digital twins. Digital heritages can preserve geometries, 
identify art forgeries, and strengthen the interaction of digital 
multimedia with a broad audience (Gomes et al., 2014). 3D 
color meshes and point clouds are popular formats of digital 
heritage. However, both meshes and point clouds are often 
unstructured data that exist in native or raw forms of points and 
tiny triangles (Zhang et al., 2021). They can support 
visualization and visual analysis but lack semantic information 
and knowledge about cultural heritages (Yang et al., 2021). 

Heritage Digital Twins (HDT) and advanced heritage 
documentation demand automatic processing methods and 
quantitative understandings of unstructured digital heritage data 
(Niccolucci et al., 2022). For example, an HDT can have a rich 
list of semantic properties and recommended hyperlinks to 
similar HDTs based on the user’s preferences. On the one hand, 
the mm-accurate 3D sensor data enables new quantitative 
evidence and analytics for supporting and supplementing 
heritage science and conservation studies. On the other hand, 
the high-level complexity of 3D data, the diversity of assets, and 
the sheer quantities of parts, patterns, and details make it 
difficult to analyze, classify, and interpret digital heritages in 
traditional ways (Grilli and Remondino, 2019; Chen and Xue, 
2023). Thus, geospatial technologies, such as semantic 
segmentation of 3D data, have been studied recently (Yang et 
al., 2023). 

Bronze drums are body-decorated percussion instruments with a 
single head and a curving waist. They originated in central and 
western Yunnan in the eighth century BC and spread across 

South China and Southeast Asia as spiritual, sacrifice, and 
musical instruments (Lu et al., 2020). Today, China has 
preserved over 1,500 ancient bronze drums of various types, 
and hundreds more are found in Burma, Laos, Thailand, and 
Vietnam (Cooler, 1995). A bronze drum is divided into three 
parts: the drum face, the drum body, and the drum foot, which 

Fig. 1. Eight types of ancient bronze drums in China. A. 
Wanjiaba type; B. Shizhaishan type; C. Lengshuichong type; 
D. Beiliu type; E. Lingshan type; F. Zunyi type; G. Majiang
type; H. Ximeng type. (Source: Lu et al., 2020, CC-BY 4.0)
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correlate to the sky, earth, and underground of the universe. The 
ornamental patterns that surround the drum are classified into 
five major content categories: geometric, animal, plant, 
religious, and narrative patterns. Typically, three-dimensional 
statues, such as frogs, are frequently used to embellish the 
margins of the drum surface (Zhang and Kamal, 2022). 
 
Bronze drums in China, for example, can be classified into eight 
types according to their scale and excavation locations, as 
shown in Figure 1. The frog drums, as shown in types C, D, and 
E in Fig. 1, are larger in size and all have frogs as decorations. 
Usually, a frog drum has a face diameter of 70 to 100 cm, 
whereas the D type has the widest face diameter of 165 cm 
(Tang, 2007). On the top, frog decorations indicate rains and 
prosperous offspring, while the solar pattern in the middle of a 
drum top standards for aspiration for sunlight.  
 
The decorations on the drums are believed to be associated with 
totem worship traditions of Karen, Zhuang, Wa, and other 
ethnicities that evolved over history. For example, Zhou 
(1178/2018) reported, “bronze drums often unearthed in 
Guangxi by the tillers … with a perfect circle with bent body … 
five sitting frogs, each with a baby on its back.” Zhu 
(1948/1961) noted that “surrounding frogs indicate [the chief’s] 
title; the more frogs, the more honorable title.” In short, the frog 
drums’ types, designs, patterns, and decorative details such as 
frogs and babies on back have long evolved. Thus, it is of 
interest in cultural, musical, and historical studies to analyze the 
evolutionary designs and production of frog drums using 
interdisciplinary qualitative and quantitative research methods, 
such as geospatial technologies and machine learning. 
 
Geospatial technologies were applied to the quantitative study 
topics about bronze drums, too (Lu et al., 2020). The 
digitalization of ancient bronze drums entails close-up 
photogrammetry, high-definition digital image capture, laser 
scanning technology (Gomes et al., 2014), recording and 
preservation of text, audio, video, and 3D analysis and 
modeling (Lan, 2015). Multi-baseline stereo matching, multi-
beam forward intersection, and block adjustment have been 
employed to study feature matching and multi-baseline stereo 
positioning, thereby enhancing the reliability and accuracy of 
point cloud data on the surface of the bronze drums (Zhang, 
2017). However, the manual 3D analysis, modeling, and 
enrichment of digital heritage require significant time, space, 
and human resources. Therefore, there is a strong need for 
automatic processing of the 3D details of digital bronze drums. 
 
Numerous 3D processing techniques utilizing supervised 
learning encounter challenges when dealing with heterogeneous 
forms, non-parametric shapes, and sophisticated decorations 
against maximum fidelity (Gomes et al., 2014). Additionally, 
the processing of unstructured points to elaborate bronze drum 
ornamentation can be massive, and volumetric and semantic 
data about digital bronze drums may be unavailable. The school 
of supervised machine learning is thus heavily limited by the 
difficulties above. Unsupervised learning techniques were thus 
studied for processing similarity in 3D point clouds.  
 
3D similarity between point clouds, in general, can be measured 
as the root-mean-squared error (RMSE), mismatching ratio, or 
heterogeneity functions defined on basic 3D features, such as 
geometry (e.g., points, edges, and primitives), color, normals, 
and curvatures (Alexiou and Ebrahimi, 2020). Advanced 
similarity measures, such as cross sections for urban objects 
(Xue et al., 2020), shape skeletons for coral and tree details 

(Huang et al., 2013), and graph models of persons (Yang et al., 
2022), have demonstrated proficiency in comprehending the 
unstructured and non-parametric 3D point cloud data. Example 
applications of 3D similarity in heritage documentation include 
clustering of ancient Chinese bridge detailing for HDTs (Pan et 
al., 2019), 3D motifs extraction (Yunus et al., 2021), contour 
surface alignment for digital restoration of decorated fragments 
(Hernandez et al., 2019), and hierarchical clustering of 3D 
points in the HSV space for automatic alternation detection 
(Musicco et al., 2021). In summary, many basic 3D similarity 
measures were successfully adopted for a variety of heritage 
documentation purposes in the literature; Yet the pros and cons 
of advanced measures such as shape skeletons and graph 
models are not well studied. 
 
This paper aims to apply an unsupervised hierarchical clustering 
method to understand the 3D details of bronze frog drums, and 
compare the basic surface point-based dissimilarity measure and 
a shape skeleton-based one. First, we adopt the RMSE 
dissimilarity definition in (Xue et al., 2020), then apply an 
optimization algorithm to compute the dissimilarity. Finally, 
hierarchical clustering groups similar frogs together. With 
clustering results from 3D point clouds and shape skeletons of 
the same frogs, the representativeness of the two 3D forms can 
be compared. Encouraging results were observed. The 
contribution of this paper, thus, lies in (i) proving the concept of 
automatic hierarchical clustering of complex heritage objects 
such as bronze frogs and (ii) pinpointing evidence that surface 
point clouds and shape skeletons are both appropriate for 
understanding the (dis)similarities and clustering HDTs. 
 
 

2. RESEARCH METHODS 

Figure 2 shows the technical processes employed in this study, 
which involved two input datasets of 3D point clouds and shape 
skeletons of frog drums. The focus of this study is on decorative 
frogs. Initially, we collected 3D point clouds of frog drums and 
computed the shape skeleton for each point cloud. Following 
this, we calculated pairwise dissimilarities in each dataset using 
the least global registration error matrix. The dissimilarity 
matrix triggered an automatic hierarchical clustering process for 
grouping geometrically similar objects. No training datasets or 
human annotations are required in this unsupervised learning 
process. Finally, we quantitatively compared the grouping 

 
Fig. 2. Research methods of this paper. 
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results, assessed the meaningfulness of the results, and 
identified any anomalies from the two 3D forms of frogs. 
 
2.1 Data collection and preprocessing 

Figures 3a and 3c showcase the three bronze frog drums 
selected from the Anthropology Museum of Guangxi, China, 
identified by registration IDs 60, 104, and 139. As shown in 
Figure 3a, a close-range LiDAR device MarvelScan was 
adopted for scanning mm-accurate 3D point clouds, and a 
digital camera Sony Alpha A7 for 3D true-color textures. The 
team fused the two data sources as color mesh models, where 
this paper focuses on the decorative frogs’ details.  
 
A total of 14 frogs were segmented after removing the drum 
top’s plane. The frogs were named clockwise, as depicted in 
Figure 3c. Subsequently, all frog mesh models were scaled to a 
uniform height of 1.0 and uniformly sampled into 100,000 
colorless points to control the triangle density and colors. This 
process generated a collection of 14 point clouds, each 
containing approximately 100,000 points and occupying an 
estimated 2.6MB (.PLY format) of disk space. It is important to 
note that the heading direction of each frog was preserved from 
the drum model. 
 
The final step of preprocessing is the preparation of 3D shape 
skeletons. In this study, we apply the axial skeleton in the 
computational geometry algorithms library (CGAL, ver. 5.3) to 
triangulated surface meshes of frogs (Gao et al., 2015). To 
control the variables of skeleton point density and normals, we 
created very-thin cylinders connecting the closest skeleton 
points for each frog, using the octree data structure in the 
open3d package (ver. 0.15, in Python 3.8). Then, 100,000 
colorless points were uniformly sampled from the curvature-like 

cylinder models, to make them consistent in format and size 
with the point clouds. 
 
2.2 Dissimilarity definition 

This paper adopts the most well-known basic metric for 
measuring dissimilarity between a pair of surface point clouds, 
i.e., the minimum RMSE (Xue et al., 2020): 
 

dissimilarity(Ci, Cj) = (1) 
minr,t∈ℝ³ RMSE(Ci, trans(rot(Cj, r),t)), 

 
where the RMSE function returns the error between the surface 
point cloud pair (Ci, Cj); r = [rx, ry, rz] is the set of 3D rotation 
parameters defined on ℝ³, and t = [tx, ty, tz]  is the set of 3D 
translation parameters. That is, the dissimilarity in the least 
global registration error of the two point clouds. The RMSE 
exploits the octree data structure to compute the nearest points. 
The RMSE computation also reuses the maximum-depth 
sampling of Cj in Xue et al. (2019) for an efficient computing, 
which is set to depth = 6 in this paper.  
 
For a pair of continuous 3D shape skeletons Si and Sj, we apply 
a dense sampling process to convert the skeletons into 
associated point clouds CSi and CSj. The dissimilarity can then 
be computed from the two dense point clouds using the same 
Eq. (1).  
 
To solve the minimization problem in Eq. (1) for measuring 
dissimilarity, an iterated algorithm DIviding RECTangle 
(DIRECT) is applied. The DIRECT is proven efficient and 
effective in the global registration of noisy point clouds (Wu et 
al., 2021; Xue et al., 2020). In contrast, some conventional 
point clouds registration methods such as iterative closest point 
(ICP) are not good at global registration of complex point 
clouds (Wu et al., 2021). The GN_DIRECT module in the nlopt 
package (https://github.com/stevengj/nlopt, ver. 2.7) provides a 
fast implantation of the DIRECT algorithm. The maximum 
iteration, i.e., the primary parameter, of the DIRECT algorithm 
was set to 2,000. 
 
The pairwise problem solving of the dissimilarity values 
between N objects yields a N×N dissimilarity matrix via Eq. 
(1). The diagonal elements of the dissimilarity matrix are all 0, 
and the data is spread symmetrically diagonally. 
 
 
2.3 Automatic hierarchical clustering with adaptive 
threshold  

A hierarchical structure can be established from the 
dissimilarity matrix generated in Section 2.2 by gradually 
pairing up the most similar items. The hierarchy clustering 
(hclustering) module in the scipy package (ver. 1.8) provides 
cluster visualization with dendrograms. A tree form represents 
the cluster hierarchy. The roots reflect unique groups of values, 
and the leaves are composed of single sample values. 
 
The threshold to cut the hierarchical tree into groups is adaptive 
in this paper. It is defined as average dissimilarity of the 
dendrogram’s lowest branch and the root (highest branch). For 
example, if the root sits at dissimilarity = 0.3 and the lowest 
branching is dissimilarity = 0.2, the threshold of grouping will 
be 0.25. One can lift the threshold to a greater value to have 
fewer but more general groups; similarly, one can tighten it to 
for more groups. 

 
Fig. 3. Collection of 14 frogs on three drums in Anthropology 
Museum of Guangxi (color in the right figures indicates 
height). (a) Close-range LiDAR and photogrammetry; (b) 
realistic 3D drum models; (c) 14 frog models segmented.  
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Fig. 4. Dissimilarity matrices between the 14 frogs (cold color 
indicates similar). (a) Surface point clouds; (b) shape skeleton  
 

 
2.4 Comparative analysis 

In this step, we employ a multi-class confusion matrix, also 
known as an error matrix, to compare the two sets of grouping 
results. A confusion matrix is a statistical tool that can compare 
classification results against the ground truth. The confusion 
matrix is a popular analytical tool in the literature of data 
sciences. Table 1 shows an example confusion matrix with nine 
cells for three classes. The three diagonal cells represent the true 
positives (TPs) of the three classes. The non-diagonal cells 
represent incorrect predictions, such as one X being predicted 
as Z and one Y being predicted as Z in the upper triangle in 
Table 1. The true positive rate (TPR) in Table 1 is thus 
calculated as (3+3+2)/10 = 0.8. In this study, we use results of 
basic 3D point-based clustering to group the rows and those of 
shape skeletons to group the columns. To enhance visual 
clarity, the preferred diagonal cells are highlighted in bold fonts 
and cool color backgrounds, and erroneous cells in warm color 
backgrounds, while the zero values have been omitted. 
 

 Predicted as 
X Y Z 

Truth X 3  1 
Y  3 1 
Z   2 

Table 1. Example confusion matrix for classifying 10 objects 
into 3 classes. 

 
In summary, the dissimilarity definition in Sect. 2.2 and the 
automatic, adaptive hierarchical clustering in Sect. 2.3 
collectively respond to the research objective of complex 3D 
heritage objects understanding, using the bronze frogs as a case 
study. The group level comparison in Sect. 2.4 further examines 
whether the clustering results are consistent from basic surface 
points and advanced shape skeletons. 
 
 

3. RESULTS 

3.1 Hierarchical clustering 

Fig. 4 shows the two dissimilarity matrices of point clouds and 
shape skeletons, respectively. In the visualized dissimilarity 
matrix in Fig. 4a, the highest dissimilar between frogs’ point 
clouds was 0.2407 between A4 and B6. The objects closet to 
A4 were C1 and C2, with a dissimilarity value at 0.14 (rounding 
of 0.1393). Meanwhile, the lowest dissimilar was 0.08 
(rounding of 0.0790) between B1 and B5, and between B4 and 
B6. Thus, the grouping threshold for 3D point clouds was 
(0.14+0.08) / 2 = 0.11. Similarly, the lowest dissimilar was 0.11 
between B4 and B6 in Fig. 4b, while A4’s lowest dissimilarity 
was 0.24. So, the threshold was 0.175 for the shape geometry’s 
results. Overall, the color distribution patterns in the subfigures 
are alike in Fig. 4, where A1 was an exception. 
 
Figure 5 manifests the results of four groups from the thresholds 
and distinguishes them in colored boxes. There are two main 
types in Fig. 5a using surface 3D point clouds, namely, frog 
ornaments with babies and frog ornaments without babies, apart 

from a worn frog ornament. The group in light yellow consists 
of three objects, i.e., B2, B4, and B6, which are the three-legged 
frogs on drum B with even serial numbers. The other group of 
“with baby” in green included A1, A2, and A3, which are the 
big four-legged frogs on drum A. The two groups in red and 
blue did not carry babies; they were the odd sequence of three-
legged frogs on drum B and four-legged frogs on drum C, 
respectively. The unusual individual was A4, which was a worn 
frog ornament with no more details on the head and back. 
Overall, the clustering results at adaptive threshold = 0.11, as 
shown in Fig. 5a, were reasonable and successful. 
 
Fig. 5b shows the clustering results using shape skeletons. The 
two main types were the same as those in Fig, 5a. Two groups 
in light yellow (i.e., “three-legged with baby”) and red (i.e., 
“three-legged without baby”) are identical to those in Fig. 5a. 
For the rest two groups, most instances remained the same, 
while A1 was clustered into “without baby” – thus in a different 
group. The reason was that the baby on the top of A1 was worn 
so that it lost the “baby topological hole/branch” feature in the 
first two groups. In addition to the unusual individual A4, C4 
was another one for the considerable noises on the two left legs, 
which were perhaps surveying errors or worn. Overall, the 
clustering results at adaptive threshold = 0.175, as shown in 
Fig. 5b, were reasonable and successful. Furthermore, most 
frogs in Fig. 5 were clustered in the same four groups, which 
were three-legged with baby, four-legged with baby, three-
legged w/o baby, and four-legged w/o baby, respectively. 
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3.2 Comparison results 

Table 2 contrasts the two sets of grouping. Out of the 14 
instances, only two instances were inconsistent. The C4 was 
grouped as “four-legged with baby” using surface point cloud, 
but as “Unusual” using shape skeleton. The A1 was grouped as 
“four-legged with baby” using surface, but “four-legged without 
baby” using shape skeleton. The TPR = 12/14 = 0.857, which 
showed a high-level consistency between the two groups. The 
consistency also indicates both surface 3D point clouds and 
shape skeletons were appropriate for clustering the 14 frogs and 
quantitative comparisons for HDTs and advanced heritage 
documentation. 
 

 Group using shape skeleton 
I II III IV V 

Group 
using 
surface 
point 
clouds 

I. Three-legged 
with baby 3     

II. Four-legged 
with baby  2  1  

III. Three-legged   3   
IV. Four-legged    3 1 
V. Unusual     1 

Table 2. Confusion matrix of the two clustering results. 

 
4. DISCUSSION AND CONCLUSION 

Heritage Digital Twins (HDT) and advanced heritage 
documentation demand automatic processing methods and 
quantitative understandings of unstructured heritage 3D data. 
This paper clusters 3D heritage details without training datasets 
and annotations. The paper presents an annotation-free 
hierarchical clustering method for comparing and grouping 
decorative frogs on bronze drums. The method includes a 
dissimilarity measurement based on minimum global 
registration error and a hierarchical clustering with adaptive 
thresholds. A comparative analysis of the dissimilarity measures 
with basic surface point clouds and advanced shape skeletons 
was conducted to identify the consistency of the two measures. 
 
As shown in Fig. 6a, 12 out of 14 frogs received consistent 
(TPR = 0.857) clustering, in four groups plus an ‘Unusual’ 
group. The 12 clustering results successfully reflected the 
morphological analysis of the photo-realistic 3D frog mesh 
models, as shown in Fig. 6a. The rest two frogs, however, 
received inconsistent grouping using surface points and shape 
skeleton. As circled in Fig. 6b, Frog A1’s bay had no 
subsidence on its sides, so it was not recognized by the 
skeleton; Frog C4’s skeleton was hindered by the geometric 

 
Fig. 5. Dendrogram of hierarchical clustering of the 14 frogs (color box stands for group). (a) Using surface point clouds; (b) 

using shape skeletons; (c) Close views of the 3D mesh details 
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Fig. 6. Comparison of the 14 photo-realistic 3D frog mesh models. (a) 12 consistent clustered frogs; (b) 2 inconsistent frogs 

 

noises around the left forefoot and a small bump on the left hide 

leg.  
 
Overall, the automatic hierarchical clustering method was 
proven helpful in processing complex heritage objects, such as 
bronze frogs, regardless of using surface points or shape 
skeletons. In addition, the consistency in the results pinpointed 
new evidence that surface point clouds and shape skeletons are 
both appropriate for understanding the (dis)similarities and 
groups for HDT and advanced heritage documentation. 
 
The annotation-free hierarchical clustering methods can be 
applied to other decorative details on cultural relics. Examples 
are solar patterns on drum tops, Roman temple columns, 
cathedral pillar details, teapot handles, Chinese tie beam 
woodcarving, and terracotta tiles. Based on a dissimilarity 
equation like Eq. (1), the new 3D heritage details' error matrix 
can quantitatively measure the geometrical differences and 
automatically group similar decorative details together. 
 
The study in this paper is not free from limitations. First, the 
source frog drums were limited to one museum, while the 
number of frog instances was limited to 14. Secondly, the shape 
skeleton computation adopted from Gao et al. (2015) may be 
sensitive to local geometric noises. In addition, the computation 
was controlled to be slow – 100,000 sampled points for 
mimicking complex objects – for both data presentations. 

Lastly, the patterns on drum tops and curved frog bodies were 

not included. 
 
Future research directions are recommended as follows. First, 
researchers can include and contrast heterogenous frog drums 
from other museums in other provinces and countries. A study 
of the sampling level of shape skeleton can lead to lightweight 
skeleton points, which may be much faster in comparing and 
documenting heavy-sized 3D surface point clouds. New robust 
shape skeleton extraction algorithms are also recommended to 
tolerate inevitable geometric noises in scanned 3D heritage 
models. 
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