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ABSTRACT: The majority of buildings are existing and have not been constructed in a BIM process. That is why, the modelling of 

existing buildings becomes a major issue. Beyond the questions of maintenance or renovation with the promise of reducing the 

environmental impact, their modelling is of interest for documentation and valorisation. But today, while the acquisition techniques 

are significantly progressing, with the use of efficient laser scanners, the modelling remains manual and very time consuming. The 

literature is not empty of proposals to automate the process. Nevertheless, many studies are based on strict architectural hypotheses 

or restricted to unoccupied buildings free of furniture. This strongly limits their application field. In response to these limitations, this 

paper presents an innovative method retaining only verticality of walls as assumptions. It is based on occupancy and density image 

analysis. Tested on a wide variety of buildings, this method is very promising with very few classifications errors. Furthermore, the 

process is successful with dynamic laser scanning data, in cluttered environments, and applied on buildings with a non-Manhattan-

World1 scheme. 

 

 
1 Manhattan-World: when the building follows a Cartesian system with  

walls, floors, and ceilings perpendicular to each other. 

 

1. INTRODUCTION AND RELATED WORK 

While BIM modelling is being generalised for new buildings, 

the modelling of existing buildings remains a major challenge. 

The potential applications are wide, from building management 

and maintenance, to security, accessibility, robotics, navigation, 

or heritage conservation. With the development, over the last 

ten years, of static laser scanners (SLS) and more recently of 

dynamic systems (MLS), significant progress has been made in 

terms of acquisition.  However, modelling phase remains a 

laborious task. This is still mainly performed manually and is 

therefore very time consuming and error prone. To automate the 

modelling, the point clouds are generally segmented into storeys 

and then into rooms. This paper focuses on the latter: the 

segmentation of point clouds acquired in storey into rooms. 

Further such point clouds will be referred as storey point clouds.  

The final aim is the detection of structural elements based on 

the resulting segmentation.  

 

Existing studies can be subdivided into two main groups: those 

that only consider the geometry of point clouds looking for 

holes formed by walls and those that rely on the trajectory of 

MLS data, as pointed out by Gourguechon et al. (2021).  

Among the first group of authors, Armeni et al. (2016) deduce 

wall location by searching for "peak-gap-peak" patterns in 

density histograms computed along the main horizontal axes of 

buildings.  The method is only applicable to scenes following 

the Manhattan-World scheme. This very restrictive assumption 

is overcome by many authors seeking rather to group the free 

spaces into rooms on 2D images or 3D voxel grids. For 2D 

methods, the transition from the image to the point cloud is 

performed by considering projected points forming each 2D 

room area.  The challenge becomes to separate grid areas at 

doorways. In 2D, Macher et al. (2017) avoid this problem by 

considering only a slice of point clouds above the doors. 

However, this method cannot be applied to mansard rooms. 

Other works in the literature mainly propose the use of 

morphological operators or the evaluation of the potential field 

in free spaces. The first method separates free spaces by eroding 

them. The potential field methods are based on distance 

measurement to the nearest full pixel (or voxel). The room 

clustering is conducted from the central empty pixels (or 

voxels) with the longest distances. Once the areas are separated, 

the rest of the grid is then principally labelled with wavefronts. 

Bormann et al. (2016) apply them in 2D and fix the erosion 

width or the distance to select central pixels, from the doors' 

width and surface criteria of the rooms. Frias et al. (2020) 

perform something similar in 3D. The erosion is stopped based 

on a minimum area threshold and the final labelling is 

conducted with wavefronts. Either in 2D and 3D, these methods 

tend to gather corridors with adjacent rooms. Jung et al. (2017) 

also erode images of free areas, with a fixed width but avoid 

this phenomenon defining their room limits with the 

skeletonisation of empty pixels surrounding these areas. 

Bobkov et al. (2017), who work with potential fields, iteratively 

adjust the distance threshold to select the central pixels. 

Moreover, these methods are sensitive to room clutter.  Thus, 

they work in 3D to compute their potential fields. Only the 

voxels lying in the half-space spanning positive z values are 

considered. Finally, Bormann et al. (2016) propose an 

alternative method based on geometry. This method relies on a 

Voronoi diagram, giving the image's skeleton. However, it tends 

to over-segment the corridors into many rooms. 

The second group of authors consider the trajectory of MLS 

data. In this case, the aim is to cut the trajectory at each door 

crossing. The points' timestamp allows the segmentation of the 

point cloud. Diaz-Vilarino et al. (2017) and Zheng et al. (2018) 

apply this principle. The formers identify the doorways with the 

point cloud profile along the trajectory. The doorway 

corresponds to the points with a low average height.  Zheng et 

al. (2018) use scanlines to detect holes in planes. As it is, these 

methods over-segment some rooms which are visited several 

times. Therefore, Diaz-Vilarino et al. (2017) propose the 
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application of an energy function minimisation to merge room 

segments that were captured several times. 

Existing methods have many limitations, especially concerning 

too strict architectural assumptions, or the presence of clutter. 

We propose to begin with the general definition of a room. 

Rooms are defined as enclosed spaces connected to the outside 

by one or more apertures. Rooms are bounded, horizontally, by 

solid or glazed walls, and in elevation, by a floor and a ceiling. 

Access to a room is at a point with a reduced width or height 

(transom). This is also the way followed by Bobkov et al. 

(2017). Like all the existing methods, we assume the verticality 

of walls, whatever on their orientation, or their shape (straight, 

curved...) or their thickness. No assumptions are made about the 

ceilings, which can be either horizontal or mansard.  

The segmentation of storey point clouds into rooms is 

particularly challenged by the presence of furniture that looks 

like walls. Some authors avoid this consideration and only 

consider unoccupied scenes. But this greatly compromises the 

application of their solution since interior scenes are only rarely 

unoccupied. Moreover, the proposed method is designed to deal 

with MLS data (point cloud and trajectory), increasingly used 

for indoor scene surveying. Even if the trajectory is not 

mandatory, it improves the results. 

 

The paper will be structured as follows. A first part presents 

theoretical elements on which the proposed method is based. 

Then the method is detailed and, finally, evaluated, with several 

datasets chosen to reflect a wide variety of environments. 

 

2. THEORETICAL ELEMENTS 

This section presents the different theoretical aspects on which 

the room segmentation method is based. Under the assumption 

of vertical walls, it will be shown that it is possible to use 

images to carry out this segmentation. The following paragraphs 

detail the image types and how walls can be identified with 

them. 

 

2.1  Projection of the point cloud on a horizontal plane 

Under the assumption of vertical walls, the point clouds of solid 

elements from floor to ceiling (e.g. walls or pillars) form voids, 

when projected to a horizontal plane. Moreover, points 

measured on a vertical wall and projected onto a horizontal 

plane, lead to denser areas relative to other types of geometry. 

 

The method described in this paper was developed considering 

these two observations. Two important layers are produced: the 

occupancy and density images of the storey point cloud 

projected on a horizontal plane.  

Occupancy images reflect the presence of points, in the vertical 

column above each pixel. It is formed by assigning the value 1 

to pixels in which points of the cloud are projected, and 0 for 

the others (Figure 1, black = 0, white = 1).  

Density images compare the number of points, in the vertical 

columns above each pixel. So, the density image is build 

counting the number of points of the cloud that are projected 

onto each pixel.  To bring the pixel values into the [0,1] range, 

they are normalised by dividing them by the maximum number 

of points projected into a pixel.  

To avoid holes and the closure of walls, the pixel size is chosen 

to be less than half of the minimum thickness of a wall and 

greater than the sampling distance of the point cloud. 

 

2.2 Impact of density heterogeneity across point cloud 

Note that input point clouds are irregular and non-uniform. 

They have some noise and, more importantly, a heterogeneous 

density of points due to the acquisition. Consequently, empty 

pixels (pixel value at 0) can be explained, not only by the solid 

elements from floor to ceiling, but also by a low density of 

points. It is especially the case for point clouds acquired with 

MLS. However, these pixels are rather isolated or make very 

fragmented areas (Figure 1d). This leads us to prefer working 

with the occupancy image, previously averaged, and its long 

discontinuities. On the contrary, thin walls, whose thickness is 

close to twice the pixel size, only create few or no empty pixels. 

Once again, this is particularly true for noisy point clouds. 

In addition, variations in density or wall coverage across the 

scene make it difficult to directly exploit density values to infer 

the presence of a wall. As well as for the occupancy image, this 

leads us to work rather with the discontinuities of the density 

image. We will refer further to o-discontinuities and d-

discontinuities, respectively, for discontinuities in occupancy 

images and discontinuities in density images. 
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Figure 1. Samples of occupancy and d-discontinuity images for 

various scene elements (1 px. = 2 cm) 

 

The discontinuities images are generated based on the method 

of Sobel et al., 1973. This method consists of calculating the 

intensity gradient at each pixel and selecting those with the 

highest gradient values. In practice, a convolution operation is 

performed on an image with two 3x3 matrices, which allows an 

approximation in each pixel of the horizontal and vertical 

derivative. The gradient norm is then deduced by combining 

these horizontal and vertical gradients.  
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2.3  Distinction between walls and furniture in images 

The scenes studied are not empty of furniture and equipment. In 

addition to the walls, the furniture (e.g.: cabinets, privacy 

screens...) can also give rise to discontinuities in density. 

Figure 1 shows the appearance of various scene elements in the 

occupancy and d-discontinuity images. A thick wall, about 

15 cm in reality, (see   Figure 1a) appears with a "d-

discontinuity" / "wide void" / "d-discontinuity" pattern. A thin 

wall, about 5 cm, (see   Figure 1b) or very slightly sloping wall 

appears with a "d-discontinuity" / "d-discontinuity" pattern. And 

finally, a piece of furniture adjacent to a wall appears as "filled 

pixels" / "d-discontinuity" / "filled pixels". Lastly, note that at a 

door location, points on the ground are measured and lead to 

filled pixels (pixel value at 1) in the occupancy images. When 

doors are open, d-discontinuities may still appear, when the 

transom is solid. On the contrary, without a transom, nor a 

closed door, or in the presence of a glazed transom, no d-

discontinuity appears because of a lack of points. Finally, it 

appears that walls are distinguishable from furniture and other 

vertical items by the contiguous presence of d-discontinuities 

with long empty pixel areas or consecutive d-discontinuities. 

These properties will be the basis of our approach.  

 

3. DEVELOPED METHOD  

The developed segmentation method of storey point clouds is 

based on the creation of 2D planimetric masks for each room. 

Room point clouds are then deduced by selecting the points of 

the input point cloud projected vertically on each mask. The 

challenge is to define the planimetric boundaries of the rooms. 

These limits must be defined in the wall position separating the 

rooms. The aim is to isolate the image of the walls. This is not 

an easy task in cluttered environments where furniture can look 

like walls. 
 

The image of the walls is first initialised based on the analysis 

of the pattern in occupancy and density images and the images 

of their discontinuities. This approximate image of the walls is 

then used to initialise the room masks using morphological 

operators. Finally, as the space is then over-segmented, regions 

are gathered when they correspond to the same rooms and their 

boundaries are refined. The developed method is summarised in 

Figure 2. 

 

3.1  Initialisation of a first approximate image of the walls 

First, an approximate image of the walls is initialised. For this 

purpose, the occupancy and density images and the images of 

their discontinuities are used. Previous section describes their 

creation from the storey point cloud projected to a horizontal 

plane. 

 

3.1.1 Approximative image of the walls from empty 

pixels of the occupancy image: We will first use the following 

property: the point clouds of solid vertical walls, when projected 

onto a horizontal plane, form voids (pixel value at 0) in the 

occupancy image. 
 

First, the broadest region of empty pixels in the occupancy 

image is selected. This corresponds to the outdoors. Not all 

empty pixels are considered because of the point cloud 

heterogeneity. Thus, to select the other empty pixel regions of 

interest, several criteria are introduced. To be included in the 

first image of the walls, small regions must meet the following 

criteria: 
 

 

P
O

IN
T

 C
L

O
U

D
 P

R
O

J
E

C
T

IO
N

 

  

SPATIALLY BIN POINTS ACCORDING 

 TO THEIR XY COORDINATES (§ 2.1) 
 

  

 

 

 
 

Occupancy image 
(Point presence/pixel) 

 

Density image 
(No. points/pixel) 

o-discontinuity image 
(edges in occupancy image) 

d-discontinuity image 
(edges in density image) 

 
 

  

P
L

A
N

IM
E

T
R

IC
 M

A
S

K
S

 F
O

R
M

IN
G

 F
O

R
 E

A
C

H
 R

O
O

M
 

 

INITIALISATION (§ 3.1 and 3.2) 

▪ Initialisation of the walls image   
▪ Erosion until free spaces separation (a) 

▪ Regions growing (b,c,d) 
 

  

  
 

 

 

REFINEMENT & MERGING (§ 3.3) 
▪ Regions merging when not 

crossed by the trajectory 
 

▪ Removal of thin areas  
 

▪ Removal of constraints 
around areas that remain 

undetermined 
 

▪ Criterion on the overlap 
of the interfaces with d-

discontinuities and d-
discontinuities 

 

◄ Final contours in blue 
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Selection of points projected 
into each planimetric mask  

 

▼One colour per room  

Figure 2: Summary diagram of the point cloud segmentation 

approach from storey to rooms 

 

- The main axis of the region should be longer than 0.5 m. 

This threshold has been fixed to keep columns and wall 

axes and allow eliminating isolated pixels or small groups 

of pixels. 

 

Closing operators for 

contours 

simplification 

between each step 

(a) (b) 

(c) (d) 
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- The region should be almost hole-free, i.e. the image of the 

area should cover at least 95 % of the image of the hole-free 

area. Moreover, the region must be "solid", i.e. the image of 

the area must cover at least 98 % of the area image that has 

undergone a morphological closure of 0.20 m and the 

removal of its holes. These two criteria, dealing with the 

presence of holes in the images, are intended to eliminate 

broader but fragmented areas. 

 

These selected empty pixel regions form the first approximate 

image of the walls (white pixels, in Figure 3). Later, this image 

will be referred to as Iw-1. The eliminated empty pixel regions 

appear in red in Figure 3. 

 

  

 Initial walls regarding empty pixels  

in occupancy image 

 Empty pixels removed from the 

initial image of the walls 

 Pixels added from d-discontinuities 

 Pixels added from d-discontinuities 

and the trajectory 

 Trajectory 

 Unclassified pixels 

Figure 3. Initialisation of the first approximate image of the 

walls 

 

3.1.2 Complement from density discontinuities: Besides 

empty pixels in the occupancy image, walls also cause d-

discontinuities. The approximate image of the walls will be 

supplemented using this property. However, as shown in 

paragraph 2.3, it is not only walls that form                d-

discontinuities but also furniture. In contrast to furniture   

(Figure 1c), when they are thick enough, the walls also produce 

empty pixels in the occupancy image, bordered by two                         

d-discontinuities (Figure 1a). At the very least, if the walls are 

thin, two consecutive discontinuities are formed with no empty 

pixels in between (Figure 1b). 

 

According to these observations, the approximate image of the 

walls is supplemented with the d-discontinuities meeting the 

following criteria:  

- The d-discontinuity covers more than 0.5 m long.  

- The d-discontinuity is in the immediate neighbourhood 

(< 0.05 m) of consecutive d-discontinuities or long             

o-discontinuities (≥ 0.5 m).  

As above, the length thresholds are set to avoid density or 

occupancy discontinuities due to a lack of points. The proximity 

threshold, set at 0.05 m, is justified by the immediate 

relationship, in the case of a wall, between consecutive d-

discontinuities or long o-discontinuities and d-discontinuities.  

These additions to the approximate walls’ image are shown in 

blue in Figure 3. 

 

3.1.3 Additional processing based on the trajectory: For 

datasets with a known trajectory, the door passing allows 

estimating the door’s localisation. It helps therefore to 

complement the initial image of the walls. The door localisation 

is deduced from the intersection of the trajectory with the d-

discontinuity image, filtered to keep only long segments 

(≥ 0.2 m). It should be noticed that doors with glazed transoms 

are not detected, because they do not produce significant d- 

discontinuities. 

 

These door points are extended with the contiguous                  

d-discontinuities within a radius of 0.2 m. This allows an 

estimation of the orientation of walls containing the doors. 

Only the door points located within 3 m of two walls (according 

to the approximate image of the walls created so far), following 

the orientation derived previously, are retained. This filter 

makes it possible to eliminate a large part of the points wrongly 

detected as doorway points. This can happen, for example, 

when the trajectory passes over a piece of furniture. The 

approximate image of the walls is supplemented by the addition 

of contiguous d-discontinuities to the filtered door points, 

within a radius of 3 m and following the orientation defined 

previously (in cyan in Figure 3). 

 

3.2 Rooms image initialisation 

At this stage, an approximate image of the walls is available. In 

this binary image, the pixels with a value of 0 (in black on 

Figure 3) correspond to the free spaces of the scene, namely the 

rooms and the walls’ openings. The aim is now to segment 

these free spaces to lead to the segmentation of individual 

rooms. Two main steps are followed: (1) kernels for each room 

are defined by successive erosions of the free spaces, (2) then a 

progressive region growing algorithm is applied on these 

kernels to produce a first approximate image of the rooms. Both 

steps are described in the next paragraphs and illustrated in 

Figure 2. Figure 4 summarises the algorithms in pseudo-code. 

 

3.2.1 Rooms kernel definition: The first step consists of 

initialising the regions for each room.  The goal is to isolate a 

zone of contiguous pixels for each room, which we refer to as 

“region kernels”. 

The starting point is the image of free spaces, i.e. the negative 

of the initial image of the walls (Figure 4, line 2). This is 

simplified by applying a closure operator to the image of the 

walls, to avoid the creation of very small areas. The closure 

distance, set at 0.5 m, was chosen to be long enough to 

eliminate all empty pixels inside the approximated walls, but 

small enough to allow the initialisation of regions in narrow 

rooms.  

The progressive erosion of the simplified free space image 

allows the separation of kernels for each room (Figure 2a). This 

erosion is carried out until all spaces are separated or until a 

maximum erosion size is reached (Figure 4, lines 3 to 5). More 

precisely, a space is separated from the others (and forms a 

kernel), when its image reaches a minimum area threshold (4 m) 

or a minimum width threshold (0.8 m). 

 

3.2.2 Region growing algorithm: The second phase 

extends the region kernels to label the whole image. The 

unknown areas are labelled from the region kernels. A region 

growing algorithm is used (Figure 4, lines 7 to 21). It is limited 

by a set of pixels that cannot be crossed, which are called 

"constraint pixels". The labelling is applied iteratively. The 

constraint image evolves with each iteration. The constraints are 

initially large and then progressively reduced to allow the 

labelling of all unknown areas. By beginning with important 

constraints and then reducing them, it is possible to avoid that a 

region of a small room, which requires less erosion to isolate it 

than a large one, " pours into another ". 
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The constraint pixels are based, in the first step, on the 

approximate image of the walls, combined with the long o-

discontinuities (≥ 0.20 m) and the d-discontinuities occurring in 

the unknown areas after the free spaces partitioning. The 

application of smaller and smaller morphological closure 

operators (1.00 m, 0.50 m, 0.20 m, 0.10 m, 0.05 m) gives the 

successive images of increasingly smaller constraints. From the 

0.20 m width closure, the empty pixel areas in the remaining 

unknown areas are added to the constraints. The occupancy and 

density discontinuities used as a first approximation of the 

constraints are gradually eliminated. The last constraint image is 

deduced only by the approximated image of the walls and the 

empty pixel areas with a 0.05 m width closure. We obtain a first 

approximation of the rooms segmentation in 2D. 

 

Figure 4. Rooms image initialisation as a pseudo-algorithm 

 

3.3 Mask refinement 

At this stage some rooms are over-segmented, especially rooms 

that are narrow and long, such as corridors, or those that are 

very cluttered. Some areas may also remain undefined, and 

regions are not contiguous with each other, forming large gaps 

between rooms. The challenge is then to group the regions 

corresponding to the same room and to refine their contours so 

that the limits between rooms correspond to wall locations. 

Three criteria are considered for that purpose: (1) the crossing 

of the trajectory with each region, for datasets with an available 

trajectory, (2) the width of the regions, (3) and for the remaining 

limits, their overlap with wide empty pixel areas, d- 

discontinuities and occupation discontinuities. 

 

Between each refinement step, a region simplification is 

performed. It allows the elimination of the grooves in areas 

mainly appearing due to open doors or furniture. So, this is 

particularly relevant in the first stages. This simplification is 

carried out with a morphological closure operator on each 

region. The approximated image of the walls is then redefined 

between each step, in the neighbourhood of the simplified 

regions. 

 

3.3.1 Grouping areas on a trajectory criterion: On the 

assumption that the MLS necessarily visits all the rooms during 

the acquisition, a criterion based on the trajectory is introduced 

to merge over-segmented areas. 

Thus, when the trajectory is known, areas that are not crossed 

by the latter are eliminated. Then, they are labelled by means of 

a region growing. As for the rooms image initialisation, this 

region growing is carried out iteratively by gradually reducing 

the constraints. 

 

3.3.2 Removing narrow rooms and undefined areas: Based 

on the principle that rooms cannot be narrower than a certain 

threshold, the narrow areas of the regions defined so far and 

simplified are eliminated. To do this, a morphological opening 

operator is used on each region. The removed narrow areas are 

relabelled by a region growing. 

Similarly, the wide (≥ 0.2 m) and remaining undefined areas 

(black pixels with a 0 value) are labelled by region growing. 

However, as these have so far remained undefined, due to the 

presence of an approached wall, constraints are eliminated in 

their neighbourhood. It allows surrounding areas to grow. 

 

3.3.3 Refining room limits: Before evaluating the limits 

between rooms and defining the final masks, the room contours 

are refined. Two simplifications of each region obtained so far 

are then carried out, followed by region growing constrained by 

the approximate image of the walls in the neighbourhood of 

these regions. A final non-constrained region growing 

completes the process. This allows obtaining thin limits 

between regions at wall location. 

 

3.3.4 Removing the last non-relevant limits: Since the 

image is still over-segmented, a final test aims to evaluate the 

limits between regions.  Those that are not significant, i.e. that 

don't really reflect a room change are eliminated. The 

elimination of the border, then leads to the merging of the areas 

on either side. To achieve this evaluation, three criteria are 

considered. A limit is removed if it does not meet any of these 

criteria. 

The first criterion considers the overlap of the limits with the 

narrow areas (< 0.80 m) of the Iw-1 image. These areas 

correspond to the thick walls and pillars of the storey. The test 

involves counting the number of pixels of the limits overlapping 

the narrow areas of the Iw-1 image. Limits whose ratio between 

the number of overlapping pixels and the total number of pixels 

exceeds a threshold of 50 % are retained. This criterion is 

particularly relevant for limits on thick walls. 

The second and third criteria consider the overlap of limits with 

d-discontinuities, o-discontinuities, and wide empty pixel areas. 

To measure this overlap, these two criteria consider the images 

of the limits reduced to the parts out of the Iw-1 image. As 

before, a ratio is calculated, this time between the number of 

pixels overlapping and the total length of the reduced limits. For 

the second criterion, this ratio is compared to a threshold set at 

75 %. The third criterion selects limits with a 50 % overlap 

ratio. and evaluates whether they are straight lines or not. For 

this purpose, a limit is considered as straight when the second 

principal axis of the enclosing ellipse is smaller than 0.20 m. 

 

4. RESULTS AND DISCUSSIONS  

To evaluate the developed method, it has been applied on 

several datasets. These datasets were chosen to reflect a wide 

variety of environments. Particular attention has been paid to 

demonstrate the strengths and limitations of the approach 

through several indicators and figures. 

4.1 Datasets 

Our method of point cloud segmentation was tested on five 

datasets acquired in three buildings with MLS scanners. The 

five datasets are point clouds of storey, accompanied by the 

corresponding acquisition trajectory. They were previously 
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spatially subsampled with a regular 1 cm grid to homogenise the 

point cloud (Figure 5). 

 

 

 

 

 
Figure 5. An overview of the different datasets. The point 

clouds (grey level) have been downsampled to highlight the 

trajectories (red). 

 

TUB1 and TUB2-1. These datasets are from the ISPRS 

Benchmark (Khoshelham et al., 2017). They were acquired in a 

building of the Technische Universität Braunschweig, in 

Germany, respectively, with a Viametris iMS3D system, and 

Geoslam Zeb-Revo RT (Figure 5a). They correspond mainly to 

the same storey. TUB1 has 11 rooms and TUB2-1 has 16 rooms 

including the 11 rooms from TUB1. Rooms are separated by 

walls of different widths and by single or double doors, both 

open and closed during the acquisition. These datasets differ 

from the others by the very small amount of furniture. 

 

HOUSE-0 and HOUSE-2. These two datasets correspond to 

two floors of a single-family house, built in the 1920s. They 

were acquired with a Geoslam Zeb-Revo RT. The house was 

occupied at the time of the acquisition, hence the presence of 

furniture in the point clouds. HOUSE-0 (Figure 5b) is the cellar 

of this house with 6 rooms, separated by very thick walls. It is a 

particularly cluttered set of data with shelves along the walls 

and a large tank. HOUSE-2 (Figure 5c) corresponds to the 1st 

floor of the house, with 10 rooms. This storey presents both 

very thin and very thick walls. It also has 3 attic rooms, 

including storage rooms that are very cluttered. 

 

INSA-1. The last dataset was acquired in a building of the 

National Institute of Applied Sciences of Strasbourg, in France, 

with a Geoslam Zeb-Revo RT (Figure 5d). It is an 

administrative building from the 1950s and is composed of 13 

rooms. This dataset was chosen to challenge the proposed 

method. Indeed, it has the particularity to present three large 

halls and several storage rooms. The buildings were occupied 

during acquisition, and therefore furniture was present. The 

rooms are separated both by solid and glazed walls. Some walls 

are not straight or directed along the main axes of the building. 

Doors between rooms can be opened or closed, single or double, 

crossed or not by the trajectory and surmounted by a solid or 

glass transom. Finally, the dataset presents two staircases, under 

which three rooms pass. 

 

4.2 Results 

 

The results are presented in Table 1. For each dataset, the 

number of rooms that were over- or under-segmented is 

calculated, as well as the number of points concerned. In 

addition to over- or under-segmentation, some points may also 

be locally misclassified (e.g. face of a wall assigned to the 

neighbouring room). This is referred to as a "slight shift" in 

room contours. These "slight shifts" have also been quantified 

by measuring the quantity of points involved. Note that the 

default parameters have been kept for all the datasets.  

 

Table 1: Results of the segmentation into rooms applied on five 

datasets (*under-segmentation ratio deduced). The lower the 

values, the better it is. 

 Over-

segmentation 

Under-

segmentation 

Slight 

boundary 

shift 

TOTAL point 

misclassification 

 Nb. 

Rooms 
Amount 

misclass. 

points 

(%) 

Nb. 

Rooms 
Amount 

misclass. 

points 

(%) 

Amount 

misclass. 

points (%) 

Amount misclass. 

points (%) 

TUB1 3/11 5.3* 1/11 6.4 0.2 11,9 
TUB2-1 2/16 3.6 0/16 0,0 0.4 4.0 
HOUSE-0 0/6 0,0 0/6 0,0 1,1 1,1 
HOUSE-2 0/10 0,0 1/10 3.4 3.6 7.0 
INSA-1 5/13 5.2 0/13 0,0 0.4 5.6 
ALL  
(EXCEPT TUB1) 7/45 3.3 1/45 0.6 1.1 5.0 

 

 
Figure 6. TUB2-1 point cloud segmented into rooms. Red 

triangles localise over-segmentations. 

 

Let us first consider TUB1 and TUB2-1 corresponding to the 

same scene but acquired with different mobile systems. With 

our method applied on TUB2-1, only two rooms are over-

(d) 

(c) 

(b) 

(a) 

HOUSE-2 

HOUSE-0 

TUB2-1 

INSA-1 

TUB1 
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segmented, representing 3.6 % of the points (Table 1). The 

corridor, at the very left of the image, is over-segmented at the 

location of a piece of furniture (Figure 6). The entrance to the 

room, at the top centre, is over-segmented due to a ceiling 

beam. Similarly, over-segmentations appear on TUB1, also at 

the entrance to the room, at the top centre of the image, as well 

as in the room at the top right of the image, due to the presence 

of pipes (Figure 7). Moreover, the corridor is divided into two 

parts at the wrong place. The phenomenon is more frequent than 

for TUB2-1, with 11.7 % of points corresponding to over- or 

under-segmentation (Table 1). At first glance, these poor results 

are surprising, since the original scene is the same. 

 

 (a)   (b) 
 

 
Figure 7. TUB1 point cloud segmented into rooms. Red and 

yellow triangles localise, respectively, over-segmentations and 

under-segmentation. (a) and (b) focus on an area with rough 

density variations. (a) is a zoom on point cloud. (b) is the d-

discontinuity image of the area.  

 

If we look closely, TUB1 and TUB2-1 highlight the impact of 

the quality of the point cloud and, in particular, a regular 

sampling. Indeed, it appears quite clearly that the TUB1 point 

cloud presents a very heterogeneous point density with abrupt 

variations, even after having applied a regular subsampling 

(Figure 7, a and b details). This appears to be due to the 

operator's walking speed, in relation to the Viametris iMS3D 

acquisition system used for TUB1. This dataset is the only one 

acquired with this system and presenting this type of problem. 

This very irregular density creates disturbing d-discontinuities 

that compromise the application of our method from the first 

step, and the walls’ image generation. 

 

 
Figure 8. HOUSE-0 point cloud segmented into rooms. 

 

Regarding the 1920s house, although very cluttered and with a 

more complex architecture (significant difference in wall size 

and attic presence), only one room was sub-segmented, out of 

the 16 rooms constituting the dataset (Figure 9a). The corridor 

and the adjacent room in HOUSE-2 were not separated. This is 

because there is very little shrinking at the end of the corridor 

and no door. As for the "slight shifts", these are minimal for 

HOUSE-0 with 1.1 % measured (Table 1). This mainly 

concerns the interface between the purple and orange rooms at 

the top left in Figure 8, where the transition from one room to 

the other is not clear. These "slight shifts" represent 3.6 % of the 

points for HOUSE-2 (Table 1). They can be particularly, 

observed where the walls are very thin (approx. 5 cm), as in 

Figure 9a. This can also be observed in the presence of inclined 

beams as in Figure 9b. This last case shows that our method 

does not consider alcoves or overhangs between rooms. 

 

 (a)   (b) 

            
 

 
Figure 9. HOUSE-2 point cloud segmented into rooms. Yellow 

triangles localise under-segmentations. (a) focuses on the under-

segmentation locus, (b) on "slight shifts". 

 

 

 (a)  (b)  (c) 

                                 
 

 
 Figure 10. INSA-0 point cloud segmented into rooms. Red 

triangles localise over-segmentations. (a) and (b) focus on over-

segmentation locus, and (c) on glazed walls. 
 

Lastly, applied to the INSA-0 dataset, five over-segmentations 

are observed (Figure 10). Four of them are formed under stairs 

(a) 

(b) 

  

 (b) 
(c) (a) 

(a) & (b) 
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(e.g. Figure 10a). The vertical walls of the stairwells thus favour 

over-segmentation. Although the place was occupied, only one 

over-segmentation is related to the presence of a piece of 

furniture (Figure 10b), this time again occurring in a narrow 

area. No sub-segmentation has occurred. In particular, the 

glazed entrance (Figure 10c) was well detected despite a lack of 

points on its boundaries compared to solid walls. Finally, there 

were very few "slight offsets" to report. The rounded shape of 

the walls did not affect the segmentation. 

 

Finally, we consider all the datasets that meet the initial 

hypotheses. So, TUB1 is excluded since it presents brutal 

variations of data density. All the datasets together represent 45 

theoretical rooms. Seven over-segmentations, and one under-

segmentation have occurred. This represents 3.9 % of the total 

points (Table 1). Four over-segmentations are due to the stairs. 

Considering in addition the slight offsets, 95 % of the point 

clouds are correctly segmented. 

 

5. CONCLUSION 

In this paper, a new method for segmentation of storey point 

clouds into rooms is proposed. It is based on the use of two 

maps deduced from datasets: d-discontinuity and o-discontinuity 

images. This method has been developed to overcome many 

assumptions found in the literature. Only the assumption of 

vertical walls is retained.  

 

Tests carried out on a set of buildings, both old and new, with 

varying architecture and degrees of clutter validate the overall 

segmentation approach. It is particularly well adapted to the 

presence of furniture, except sometimes in narrow areas. Long 

corridors are not over-segmented thanks to the overlap criteria. 

The tests have been performed on very different environments, 

using the same default parameters. The satisfying results led us 

to conclude that the threshold values are adapted for a large 

variety of scenes.  

It seems promising for cultural heritage buildings. Although 

specific tests would be required on castles, temples, or military 

barracks to confirm its applicability.  

 

However, the tests reveal some weaknesses, particularly in the 

presence of rooms under stairs. In these cases, over-

segmentation occurs. The condition of a point cloud without too 

many rough variations is also unavoidable. We can already 

suggest some ways to improve the process and overcome these 

limitations. For example, the development of a filter on the d-

discontinuity images might improve the problems of density 

changes. This filter would be based on the vertical distribution 

of the points.  

 

Another advantage of the proposed methodology is that it works 

successfully on MLS data. It must be noticed that the trajectory 

is not mandatory for the segmentation process, it is only used as 

an add-on. In future experiments, the methodology will be 

assessed by comparing the produced results with a reference 

dataset from SLS data.  
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