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Abstract 
 
The National Heritage Administration of Korea designates and manages particular non-native species, as well as highly reproductive 
native plants with strong environmental adaptability, as invasive plants to preserve the unique natural landscapes within cultural 
heritage sites. However, investigating and managing large-scale cultural heritage areas—such as palaces and fortresses—requires 
considerable time and labor, and these efforts are further hindered by challenging terrain. This study investigates the use of 
hyperspectral imaging (HSI), acquired via unmanned aerial vehicles (UAVs), as an efficient approach for monitoring the distribution 
of black locust (R. pseudoacacia), a representative invasive species. HSI provides rich spectral information by continuously measuring 
reflectance across a wide range of wavelength bands. We utilize HSI data comprising 150 spectral bands to detect the presence of black 
locust in the Gongsanseong and Busosanseong fortress areas. To address the limitations of benchmark-based models, such as poor 
generalizability and overfitting to dataset-specific features, we propose an ensemble approach that integrates the strengths of multiple 
learning models. This includes neural networks designed to capture both spectral and spatial features, allowing for complementary 
processing of complex spectral patterns and spatial contextual information. From a numerical study, the proposed method achieves 
robust detection performance for target species, even in heterogeneous environments. 
 

1. Introduction 

Cultural heritage, as a tangible legacy of human history and 
tradition, embodies cultural uniqueness, identity, and the 
evolution of societal practices. Among these, large-scale cultural 
heritage sites are characterized by extensive spatial coverage or 
the presence of structures with considerable vertical elevation or 
facade area. These sites often include diverse vegetative 
elements, which, while contributing to unique natural landscapes, 
may also include invasive plant species. Non-native and certain 
native species with high reproductive capacity and broad 
environmental adaptability are classified and managed as 
invasive due to their potential ecological impact. 

In South Korea, the conservation and management of state-
designated cultural heritage sites are periodically assessed 
through visual inspections, as stipulated in Article 44 of the 
Cultural Heritage Protection Act. However, monitoring large-
scale cultural heritage sites imposes significant financial and 
human resource burdens, with accessibility further constrained 
by topographical complexity. To address these issues, we require 
the utility of drone-based HSI as a viable remote sensing 
approach. HSI enables the simultaneous acquisition of 
reflectance data across a wide spectral range, encompassing 
visible to near-infrared wavelengths. 

Unlike traditional RGB imaging, which captures information in 
three broad, discrete bands, HSI records reflectance across 
numerous contiguous, narrow spectral bands. This high spectral 
resolution facilitates the differentiation of materials with similar 
spectral characteristics, a capability beyond the scope of RGB or 
conventional multispectral systems (Landgrebe et al., 2002). 
Despite its advantages, the use of aerial HSI poses several 
practical challenges. Accurate spectral acquisition is highly 
dependent on optimal solar illumination geometry and consistent 

lighting conditions, given the sensitivity of spectral reflectance to 
ambient variations. Additional complications arise from 
atmospheric interference, sensor misregistration, and spectral 
mixing caused by scattered incident/reflected light. These factors 
contribute to intra-class variability and may degrade 
classification accuracy. Furthermore, the labelling process—
crucial for supervised learning—is hindered by the 
inaccessibility of ground-truthing locations due to rugged terrain. 
In such cases, label assignment for R. pseudoacacia must rely on 
expert interpretation of HSI data, supplemented by auxiliary 
RGB imagery. The spatial distribution of R. pseudoacacia, while 
often clustered, can also appear random, introducing further 
uncertainty and noise into the labelling process (Wang et al., 
2023). 

Conventional approaches typically assess model performance on 
well-structured benchmark datasets. However, such evaluations 
may result in overfitting to dataset-specific characteristics, 
leading to performance degradation when models are deployed 
in real-world scenarios. To address this issue, the present study 
proposes an ensemble learning framework that integrates 
predictions from multiple heterogeneous models to enhance 
generalization and robustness. 

This study focuses on detecting R. pseudoacacia—an invasive 
species—within two large-scale cultural heritage sites in South 
Korea: Gongsanseong Fortress and Busosanseong Fortress. 
High-resolution HSI data acquired via drone are used to 
formulate the detection problem as a binary classification task, 
distinguishing between pixels corresponding to R. pseudoacacia 
and those of the surrounding environment. 

This paper is organized as follows: Section 2 details the dataset 
used, the data preprocessing steps, and the proposed 
methodology. Section 3 describes the experimental results and a 
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comparative analysis between baseline models and the proposed 
approach. Finally, Section 4 presents the conclusions and 
limitations of this paper. 

2. Methodology 

2.1 Target Region 

Gongsanseong fortress and Busosanseong fortress are 
representative mountain fortresses dating from the Baekje period, 
constructed utilizing natural topographical features. As shown in 
Figure 1-2, both fortresses are situated within forested regions 
and host diverse plant communities, conferring significant 
ecological and landscape value. Notably, the intra-fortress 
vegetation is considered a critical element that both harmonizes 
with the natural environment and influences the conditions for 
preserving cultural heritage. 

  

Figure 1. View of Gongsanseong Fortress with Polygon 

 

Figure 2 Busosanseong Fortress with Polygon Labelling 

The dominant indigenous arboreal species within Gongsanseong 
and Busosanseong predominantly include Quercus spp. 
(e.g., Quercus acutissima, Quercus serrata, Quercus 

aliena), Pinus spp., Prunus spp., and Acer spp. These species 
constitute the principal canopy layer of the forest structure within 
the sites. The understory layer comprises various shrub species 
such as Rhododendron mucronulatum, Cornus walteri, 
and Weigela spp., contributing to a naturally stratified vegetation 
structure. R. pseudoacacia, an alien tree species, has established 
extensive colonies within the fortress precincts, facilitated by its 
rapid growth rate and high reproductive capacity. However, this 
species is officially designated as a noxious invasive plant due to 
its detrimental ecosystem impacts, including suppressing the 
growth of indigenous flora and reducing local biodiversity. 
Furthermore, its aggressive root system expansion and the 
accumulation of litterfall and organic matter pose potential risks 
to the structural integrity and preservation environment of 
cultural heritage elements. Consequently, intensive and sustained 
monitoring and management protocols specifically targeting R. 
pseudoacacia are deemed essential. 

2.2 Dataset 

2.2.1 Original Dataset 

This study utilized HSI acquired over the Gongsanseong and 
Busosanseong sites in July 2023. Owing to the extensive spatial 
extent of these areas, data acquisition was conducted using an 
Unmanned Aerial Vehicle (UAV). Multiple overlapping image 
strips were captured during sequential flight lines. Subsequently, 
these individual strips were processed and synthesized into a 
single composite mosaic image for each respective site, 
generating the final datasets. 

The acquired hyperspectral data encompass the spectral range 
from 400 nm to 1000 nm, comprising a total of 150 spectral 
bands. The imagery has a ground sampling distance (GSD) of 0.3 
meters, corresponding to its spatial resolution. The resulting 
hyperspectral data cube for the Gongsanseong fortress has 
dimensions of 2,799 × 2,563 × 150 (rows × columns × bands), 
and for the Busosanseong fortress, the dimensions are 2,715 × 
1,843 × 150. 

Site Spatial 
Resolution 

Number 
of 

Spectral 
Bands 

Spectral 
Range 
(nm) 

Image 
Dimensions 

(Rows × 
Columns × 

Bands) 

Gongsanseong 
0.3m 150 400 – 

1000 

2799 * 
2563 * 150 

Busosanseong 2715 * 
1843 *150 

Table 1. Specifications of Hyperspectral Images 

2.2.2 Data Preprocessing 

Following the generation of the integrated mosaic imagery, non-
forested areas were masked out and excluded from the primary 
analysis domain. Polygonal regions of interest were subsequently 
delineated based on a combination of previously utilized polygon 
datasets and ground-truth data obtained through dedicated in situ 
field surveys. The finalized ROI polygons for each study site are 
presented in Figure 1-2. A total of 251 polygons were delineated 
for the Gongsanseong fortress, and 49 polygons for the 
Busosanseong fortress. The labeled data in this study was not 
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solely reliant on visual annotations by experts; instead, it was 
constructed based on ground truth information acquired through 
twelve direct field surveys using a high-precision GPS (Trimble 
R10), thereby minimizing noise and bias in the annotation 
process. 

This dataset suffers from severe class imbalance problem. Pixels 
corresponding to the target class, R. pseudoacacia, represent only 
a small fraction of the total pixel population within the analysis 
areas, accounting for just 6.02% of all pixels in the 
Gongsanseong fortress and only 0.8% in the Busosanseong 
fortress. To mitigate potential performance degradation and bias 
resulting from this severe imbalance between the target and 
background classes, several remedial strategies were considered, 
including oversampling, undersampling, and data augmentation.  

Due to XGBoost’s requirement for tabular input, direct 
application to 3D HSI data is not feasible. Accordingly, HSI was 
processed on a per-pixel basis, using the spectral bands as the 
primary input features. To incorporate spatial context, additional 
features were generated by computing the mean reflectance 
values across 5×5-pixel neighborhoods centered on each pixel. In 
contrast, the deep learning models directly utilized 7×7-pixel 
patches extracted from the HSI data, allowing them to inherently 
learn both spectral and spatial features in a unified spatio-spectral 
representation. 

In this study, the dataset was partitioned by allocating 3% of the 
total data for the training set, with the remaining 97% reserved as 
the test set. This partitioning strategy was adopted primarily 
considering the severe class imbalance inherent in the dataset, as 
previously detailed. Allocating a significantly large proportion of 
the data for training under such conditions of pronounced 
imbalance presents a considerable risk: specifically, utilizing a 
larger training subset could result in insufficient exemplars for 
the minority class (R. pseudoacacia), potentially hindering the 
model's ability to effectively learn its distinguishing features 
during the training phase. 

2.3 Proposed Method 

2.3.1 XGBoost 

Extreme Gradient Boosting (XGBoost) is an ensemble learning 
technique belonging to the boosting family, which constructs a 
robust predictive model by combining multiple weak learners. 
This method is founded on the boosting principle, wherein new 
models are iteratively trained based on the errors remaining from 
preceding models in the sequence, thereby incrementally 
improving the overall model performance (Chen et al., 2016). 
XGBoost operates within the generalized gradient boosting 
framework. This framework utilizes the gradient descent 
algorithm to minimize a specified differentiable loss function, 
optimizing the model at each iteration by fitting a new learner to 
the negative gradient of the loss function concerning the current 
ensemble's predictions. XGBoost incorporates several 
algorithmic enhancements and optimization techniques 
(including sub-optimal heuristics) designed to implement this 
gradient boosting process with high computational efficiency, 
often by reducing algorithmic complexity. It is engineered with 
the dual objectives of achieving both enhanced predictive 

performance and efficient training speed, incorporating advanced 
features such as regularization and the capability to handle 
missing values during the model training process intrinsically. 

2.3.2 SpectralFormer 

SpectralFormer (SF) model leverages a state-of-the-art 
Transformer-based architecture specifically adapted for HSI 
analysis. It is designed to effectively capture subtle variations 
within spectral sequences, a task often considered challenging for 
conventional CNN or RNN approaches. Key innovations include 
the Group-wise Spectral Embedding module, which embeds 
adjacent spectral bands collectively on a group basis, and the 
Cross-layer Adaptive Fusion module, which facilitates the 
effective integration of feature information propagated across 
different network layers. This design enables the model to 
simultaneously learn both local spectral differences and long-
range dependencies within the HSI data cube (Hong et al., 2021). 

2.3.3 DSNet 

DSNet (Dual-Branch Subpixel-Guided Network) is a deep 
learning framework specifically engineered to enhance HSI 
classification performance. It features a dual-branch architecture 
comprising a deep autoencoder-based unmixing network and a 
CNN-based classifier network. The former extracts subpixel-
level information, while the latter derives pixel-level class 
features. These distinct feature sets are subsequently integrated 
via a subpixel fusion module. This module is designed to ensure 
high-fidelity information fusion between pixel and subpixel 
representations, thereby enabling more robust and accurate 
classification outcomes. DSNet surpassed the performance of 
several existing state-of-the-art HSI classification methodologies 
across three standard benchmark datasets (Han et al., 2024). 

2.3.4 Group-Aware-Hierarchical-Transformer 

Group-Aware Hierarchical Transformer (GAHT) is a 
Transformer-based model specifically designed for HSI 
classification. It introduces a novel Grouped Pixel Embedding 
(GPE) module designed to constrain the scope of the Multi-Head 
Self-Attention mechanism to local spatio-spectral contexts. The 
GPE module emphasizes local relationships within the spectral 
channels of the HSI data, facilitating feature extraction that 
captures both global and local characteristics within the spatio-
spectral domain. Furthermore, GAHT employs a hierarchical 
architecture, which aims to minimize the number of model 
parameters while concurrently improving classification accuracy 
(Mei et al., 2022). 

2.3.5 SSFTT 

Spectral–Spatial Feature Tokenization Transformer (SSFTT) is a 
Transformer-based model proposed for the effective extraction 
and integration of spectral and spatial information from high-
dimensional HSI data. The core concept involves partitioning the 
input data into distinct 'Spectral Tokens' and 'Spatial Tokens'. 
Features associated with each token type are learned 
independently before being integrated for the final classification 
task. 

Specifically, the Spectral Tokenization module focuses on 
extracting features along the spectral dimension, while the 
Spatial Tokenization module captures information about the 
spatial structure. This separation allows the Transformer 
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architecture to process these different, yet crucial, information 
types in a balanced manner. Subsequently, a Feature 
Tokenization module integrates these spectral and spatial tokens, 
generating a unified spectral-spatial representation that is fed into 
the classifier. This architectural design aims to mitigate potential 
information loss issues inherent in high-dimensional data 
processing and contribute to enhanced classification accuracy 
(Sun et al., 2023). 

2.3.6 RSSAN 

RSSAN (Residual Spectral-Spatial Attention Network) is a deep 
learning model specifically designed for HSI classification, 
which uniquely combines residual learning principles with 
attention mechanisms to extract and fuse spectral and spatial 
information effectively. The model typically learns spectral and 
spatial features through separate pathways initially, followed by 
an integration step that effectively represents the complex data 
structure inherent in HSIs. The incorporation of residual 
connections facilitates the training of deeper networks while 
mitigating the gradient vanishing problem. Concurrently, 
attention mechanisms are employed to selectively emphasize 
salient spectral and spatial features, thereby enhancing the overall 
classification performance (Zhu et al., 2021). 

2.3.7 Ensemble 

Ensemble learning combines multiple individual base models to 
enhance overall predictive accuracy and robustness. Rather than 
relying on the output of a single model, ensemble methods 
aggregate predictions from a diverse set of learners. This process 
typically leads to reduced variance, mitigates overfitting, and 
improves generalization performance compared to standalone 
models.  

Representative ensemble methods include bagging (Bootstrap 
Aggregating), boosting, and stacking (Stacked Generalization). 
Bagging techniques, exemplified by Random Forests, generally 
involve training multiple base learners independently on different 
bootstrap samples drawn from the original dataset and combining 
their predictions, often through averaging or majority voting. 
Boosting methods, such as XGBoost, sequentially construct an 
ensemble by training weak learners. Each new model focuses on 
correcting the errors or residuals of the preceding models in the 
sequence. Stacking utilizes the predictions generated by multiple 
diverse base models as input features for a secondary model 
termed a meta-learner, which is trained to produce the final 
output prediction. 

In the context of analyzing high-dimensional data like HSI, 
ensemble learning provides a potent framework. It allows for the 
effective utilization of both spectral and spatial information by 
integrating the complementary strengths inherent in diverse 
model architectures to improve overall predictive performance.  
We use a soft voting method. This performs the final prediction 
by averaging the probability-based outputs produced by each 
individual constituent model: 

 F(x)=  � wm fm(x)
M

m=1

  (1) 

Here, 𝑤𝑤𝑚𝑚 represents the weight assigned to the 𝑚𝑚-th constituent 
model in the ensemble ( ∑ wm=1, wm

M
m=1 ≥ 0,∀𝑚𝑚) . These 

weights can typically be determined based on the performance of 

individual models evaluated on a separate validation dataset, or 
alternatively, they can be assigned uniformly (e.g., 𝑤𝑤𝑚𝑚 = 1

𝑀𝑀
 for 

an ensemble of 𝑀𝑀  models) to implement a simple averaging 
scheme. 

2.3.8 Process of Proposed Model 

Fig. 3 illustrates the overall processing pipeline of the proposed 
methodology designed for R. pseudoacacia cluster detection 
utilizing HSI data. The input to the pipeline is the HSI data cube, 
which inherently contains both spatial and spectral information. 
From this input, various relevant features are extracted. 
Subsequently, classification predictions are performed 
independently using a suite of six distinct models: XGBoost, 
DSNet, GAHT, RSSAN, SF, and SSFTT. 

Each of these models yields an output representing the estimated 
probability of presence for the target (R. pseudoacacia). These 
individual probabilistic predictions are then aggregated using the 
previously mentioned soft voting ensemble strategy. This 
probability averaging approach is adopted because combining 
outputs from multiple diverse models is generally effective in 
reducing prediction variance and mitigating the risk of overfitting 
compared to deploying any single model. The final classification 
output is thus derived based on the averaged probability scores 
across all participating models in the ensemble.  

3. Results 

3.1 Experimental Environment and Parameter Settings 

All experiments were conducted on a system equipped with an 
Intel(R) Xeon(R) Gold 6348 CPU, 256GB RAM, and an 
NVIDIA A10 24GB GPU. We set 200 training epochs. For the 
XGBoost model, the learning rate was set to 0.3. For the deep 
learning-based models, excluding RSSAN and GAHT, we used 
a 0.001 learning rate for the Adam optimizer. The RSSAN model 
was trained using a learning rate of 0.003 with the RMSprop 
optimizer, while the GAHT model was trained using a learning 
rate of 0.001 with the SGD optimizer.  

3.2 Performance Evaluation Metrics 

In this study, the performance of the models is evaluated using 
three key metrics: precision, recall, and the F1-score. Precision is 

DSnet

XGBoost

Final Prediction

Classification 
Result

Original HSI

H

W

B

RSSAN

GAHT

SSFTT

SpectralFormer

Classification 
Models

Ensemble

Figure 3. Pipeline of Proposed Model
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defined as the ratio of correctly predicted positive samples to the 
total number of samples predicted as positive. Specifically, true 
positives (TP) represent the number of actual positive instances 
that are correctly identified, while false positives (FP) refer to the 
number of negative cases that are incorrectly predicted as 
positive. Recall is the ratio of correctly predicted positive 
samples to the total number of actual positive samples. In this 
context, false negatives (FN) are the number of positive instances 
that are incorrectly classified as negative. The F1-score, which is 
the harmonic mean of precision and recall, provides a single 
measure that balances the trade-off between the two. The 
formulas used to compute these performance metrics are as 
follows: 

 Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  , Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (2) 

 F1-score = 2 ⋅
Precision ⋅ Recall

Precision + Recall (3) 

3.3 Experimental Results 

Table 2 and 3 present the comparative classification performance 
results for the Gongsanseong and Busosanseong datasets, 
respectively, evaluated using precision, recall, and F1-score 
metrics for the proposed ensemble model versus the individual 
baseline models. Overall, the proposed ensemble model 
demonstrates superior performance across all three metrics, 
thereby substantiating the effectiveness of the proposed method 
over reliance on any single baseline model. 

Models Precision Recall F1-score 
XGBoost 0.5565 0.7970 0.6553 

SF 0.7937 0.6928 0.7397 
DSNet 0.7437 0.6236 0.6688 
GAHT 0.7939 0.7481 0.7702 
SSFTT 0.7992 0.6834 0.7361 
RSSAN 0.7972 0.7116 0.7514 
Proposed 0.7901 0.7973 0.7937 
Table 2. Classification Result of Gongsanseong Fortress 

Focusing on the results for the Gongsanseong dataset (Table 2), 
specific observations regarding the baseline models are as 
follows: XGBoost achieved a high recall of 0.7970, but its 
precision was markedly low at 0.5565. This resulted in an F1-
score of 0.6553, the lowest recorded among all evaluated models, 
suggesting a potential tendency for over-detection leading to a 
high incidence of FPs. SF exhibited relatively stable performance, 
recording precision of 0.7937, recall of 0.6928, and F1-score of 
0.7397, thus maintaining a reasonably high recall. DSNet showed 
comparatively lower performance, with a recall of 0.7437 and 
notably the lowest Precision (0.6236), yielding a correspondingly 
low F1-score of 0.6688. The GAHT, SSFTT, and RSSAN models 
all demonstrated generally stable performance, each achieving 
recalls exceeding 0.79. Among these, GAHT displayed balanced 
and excellent results with a precision of 0.7481 and an F1-score 
of 0.7702. RSSAN also yielded a satisfactory F1-score of 0.7514. 
Although SSFTT attained the highest recall (0.7992), its lower 
precision of 0.6834 constrained its F1-score to 0.7361. 
 
In contrast, the proposed ensemble model, which integrates the 
prediction probabilities derived from these diverse classifiers, 

achieved the highest performance across all three-evaluation 
metrics for the Gongsanseong dataset. It recorded a precision of 
0.7901, a recall of 0.7973, and an F1-score of 0.7937. Regarding 
the results for the Busosanseong dataset (Table 3), the XGBoost 
model recorded the highest recall score at 0.8835. However, its 
relatively low precision (0.4746) and consequent F1-score 
(0.6174) indicate a tendency towards high detection sensitivity 
coupled with numerous false positives. This characteristic, 
suggesting frequent misclassification of non-target vegetation, 
limits its practical utility for standalone application. Conversely, 
the GAHT model demonstrated generally balanced and strong 
performance, exhibiting particularly excellent results in terms of 
harmonizing high precision and recall. RSSAN and SSFTT also 
delivered comparable top-tier results, recording F1-scores of 
0.7995 and 0.7938, respectively. 

Models Precision Recall F1-score 
XGBoost 0.4746 0.8835 0.6174 

SF 0.8293 0.7318 0.7774 
DSNet 0.7034 0.5624 0.6074 
GAHT 0.8537 0.8095 0.8308 
SSFTT 0.8269 0.7638 0.7938 
RSSAN 0.8417 0.7619 0.7995 
Proposed 0.8782 0.8053 0.8400 

Table 3. Classification Result of Busosanseong Fortress 

The proposed ensemble model yields an F1-score of 0.8400 for 
the Busosanseong dataset. It achieved the highest F1-score 
among all models and concurrently secured the highest precision, 
indicating outstanding performance capabilities in both accurate 
detection of the target species and the minimization of FPs. These 
results further underscore the efficacy of the proposed method in 
synergistically combining the complementary strengths of 
diverse constituent models to maximize overall vegetation 
detection performance. 

In summary, the proposed ensemble model demonstrates the 
ability to achieve both high recall and strong precision, 
confirming its robustness and reliability across the diverse study 
sites. 

3.3.1 Ablation Study 

To evaluate stability and generalization capability of the 
proposed ensemble model, we conduct experiments. For both the 
Gongsanseong and Busosanseong datasets, the evaluation was 
repeated utilizing 10 random seed initializations. For each 
random seed, optimal ensemble weights for combining base 
models are derived based on the classification performance 
achieved on the corresponding test dataset. The precision, recall, 
and F1-score metrics were calculated for the ensemble model 
configured with this optimal weight. The six base models used in 
the ensemble, in the order corresponding to the weight sequence, 
are GAHT, RSSAN, SpectralFormer (SF), SSFTT, XGBoost, 
and DSNet. 

Seed Best weights Precision Recall F1-
score 

20250401 (0.3, 0.1, 0.2, 
0.1, 0.3, 0.0) 0.7908 0.7855 0.7881 

20250402 (0.3, 0.1, 0.1, 
0.1, 0.4, 0.0) 0.7829 0.8104 0.7964 
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20250403 (0.4, 0.1, 0.1, 
0.0, 0.4, 0.0) 0.7783 0.8045 0.7912 

20250404 (0.3, 0.2, 0.2, 
0.0, 0.3, 0.0) 0.7947 0.7929 0.7938 

20250405 (0.4, 0.0, 0.1, 
0.2, 0.3, 0.0) 0.7907 0.7962 0.7935 

20250406 (0.3, 0.2, 0.1, 
0.1, 0.3, 0.0) 0.7917 0.8036 0.7976 

20250407 (0.2, 0.3, 0.1, 
0.1, 0.3, 0.0) 0.7897 0.7935 0.7916 

20250408 (0.3, 0.2, 0.1, 
0.1, 0.3, 0.0) 0.8021 0.7936 0.7978 

20250409 (0.3, 0.1, 0.1, 
0.2, 0.3, 0.0) 0.7883 0.7978 0.7930 

20250410 (0.3, 0.2, 0.2, 
0.0, 0.3, 0.0) 0.7907 0.7937 0.7922 

Table 4. Result of Gongsanseong Fortress 

Table 4 summarizes the results obtained from the seed-specific 
experiments conducted on the Gongsanseong dataset. The 
performance metrics exhibited the following ranges: precision 
varied from 0.7738 to 0.8021, recall ranged from 0.7855 to 
0.8134, and the F1-score spanned from 0.7881 to 0.7978. The 
average F1-score calculated over these 10 seeds was 
approximately 0.7935. 

A consistent trend observed across most trials was the 
concentration of optimized ensemble weights on the GAHT, 
XGBoost, and RSSAN models. In contrast, the SSFTT and 
DSNet models were frequently assigned low weights, and in 
some cases, weights of zero. This implies that the proposed 
method effectively employs a selective combination strategy—
allocating higher weights to models that demonstrate greater 
reliability, as inferred from their performance contributions on 
the test set during the weight optimization process, while 
automatically down-weighting or excluding models with 
comparatively limited predictive value. 

The experiment conducted using Seed 20250408 yielded the 
highest performance among trials with a precision of 0.8021, 
recall of 0.7936, and an F1-score of 0.7978. The corresponding 
optimal weights for this seed, following the order GAHT, 
RSSAN, SF, SSFTT, XGBoost, and DSNet, were 0.3, 0.2, 0.1, 
0.1, 0.3, and 0.0, respectively. 

Table 5 presents the results for the Busosanseong dataset, which 
generally exhibited higher performance levels compared to those 
observed for Gongsanseong. Across all trials, the performance 
metrics for Busosanseong were observed within the following 
ranges: Precision from 0.8603 to 0.8982, recall from 0.7824 to 
0.8247, and F1-score from 0.8363 to 0.8442. The average F1-
score across these trials was calculated as 0.84.  

For the Busosanseong dataset, weight distribution concentrated 
on the GAHT, SSFTT, and RSSAN models was particularly 
prominent. In most cases, the optimization process assigned 
DSNet and XGBoost zero weight and thus effectively removed  
them from the ensemble process. It implies that the relative 
contribution of specific constituent models was critically 
influenced by the data characteristics inherent to the 
Busosanseong region. The most outstanding performance for this 
dataset was achieved with Seed 20250401, recording a precision 
of 0.8647, a recall of 0.8247, and an F1-score of 0.8442. This 
optimal result corresponds to an ensemble combination that 
assigned a high weight (0.5) to the GAHT model. The 

corresponding optimal weights, where the orders are GAHT, 
RSSAN, SF, SSFTT, XGBoost, and DSNet, were 0.5, 0.3, 0.2, 
0.0, 0.0, and 0.0, respectively. 

Seed Best weights Precision Recall F1-
score 

20250401 (0.5, 0.3, 0.2, 
0.0, 0.0, 0.0) 0.8647 0.8247 0.8442 

20250402 (0.5, 0.0, 0.1, 
0.4, 0.0, 0.0) 0.8603 0.8217 0.8406 

20250403 (0.5, 0.1, 0.1, 
0.3, 0.0, 0.0) 0.8881 0.8043 0.8442 

20250404 (0.5, 0.0, 0.2, 
0.3, 0.0, 0.0) 0.8982 0.7824 0.8363 

20250405 (0.5, 0.1, 0.4, 
0.0, 0.0, 0.0) 0.8673 0.8098 0.8376 

20250406 (0.5, 0.2, 0.2, 
0.1, 0.0, 0.0) 0.8826 0.8068 0.8430 

20250407 (0.4, 0.2, 0., 
0.1, 0.0, 0.0) 0.8907 0.7882 0.8363 

20250408 (0.5, 0.2, 0.1, 
0.2, 0.0, 0.0) 0.8850 0.8028 0.8419 

20250409 (0.5, 0.2, 0.2, 
0.1, 0.0, 0.0) 0.8717 0.8064 0.8378 

20250410 (0.5, 0.0, 0.3, 
0.2, 0.0, 0.0) 0.8733 0.8062 0.8384 

Table 5. Result of Busosanseong Fortress 

The inter-site comparison revealed that the Busosanseong dataset 
generally yielded superior performance compared to 
Gongsanseong, with an observed difference of approximately 
0.05 based on the average F1-score. This performance 
discrepancy could potentially be attributed to variations between 
the study sites in factors such as vegetation density, inherent 
spectral characteristics of the landscape elements, or the quality 
of the original acquired HSI data. 

Furthermore, the proposed ensemble method exhibited low 
performance variance and consistently stable results across 
different random seed initializations for both sites. This 
consistency highlights the model’s inherent reproducibility and 
robustness. Additionally, the observation that the optimal weight 
combinations differed between the two regions suggests that the 
ensemble framework possesses a dynamic, weight-adaptive 
structure capable of adjusting to site-specific data characteristics. 

Overall, the multi-seed experiments confirm that the proposed 
ensemble model delivers robust and consistent performance 
irrespective of initialization conditions, while also demonstrating 
a valuable ability to adaptively adjust weighting schemes based 
on the contextual characteristics of the input data. This finding is 
particularly significant in terms of the model’s reliability and 
scalability for real world field. 

4. Conclusion 

We propose an ensemble-based methodology that integrates HSI 
with machine learning and deep learning techniques to detect R. 
pseudoacacia in large-scale cultural heritage sites effectively. 
Specifically, we use an ensemble framework to aggregate 
prediction probabilities from a diverse set of models, including 
XGBoost, SpectralFormer, DSNet, GAHT, SSFTT, and RSSAN. 
By leveraging this ensemble approach, the predictive limitations 
of individual models are mitigated, thereby enhancing overall 
classification accuracy.  
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While the present study addressed the data imbalance issue 
through undersampling, this method has an inherent limitation of 
potential information loss. Future research should therefore apply 
data augmentation techniques, such as Thin Plate Spline (TPS) 
transformation, to better preserve the structural characteristics of 
vegetation like Robinia pseudoacacia. Beyond this data-level 
consideration, the study's scope itself presents a limitation. As the 
research is centered on Korean fortresses, the generalizability of 
its results to other geographical locations or different categories 
of cultural heritage is inherently limited. Consequently, further 
studies should also aim to improve the model's universality by 
introducing domain adaptation methods. 

The proposed method demonstrates robust detection capabilities 
for target species, even in heterogeneous environments. 
Moreover, it offers significant practical utility for large-scale 
vegetation monitoring in cultural heritage areas, potentially 
reducing the need for extensive manual fieldwork. Future work 
will focus lightweight model optimization. The primary goal is 
to improve computational efficiency by reducing inference time 
and minimizing model complexity, thereby enhancing the 
system's feasibility in operational settings. 
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Appendix A. Result of Gongsanseong Fortress and Busosanseong Fortress 

Figure A1. Classification Map for Gongsanseong Fortress, (a) Ground Truth, (b) XGBoost, (c) DSNet, (d) GAHT, (e) 
RSSAN, (f) SF, (g) SSFTT, (h) Proposed Model, (i) Color Labels 

Figure A2. Classification Map for Busosanseong Fortress, (a) Ground Truth, (b) XGBoost, (c) 
DSNet, (d) GAHT, (e) RSSAN, (f) SF, (g) SSFTT, (h) Proposed Model 
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