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Abstract

Three-dimensional point clouds are becoming indispensable in archaeological studies. They are mostly used to document the site,
to digitally visualize it, or to analyse its topographical context. Since many of the sites are embedded or semi-embedded within
the terrain, they tend to be overlooked, misrepresented, or simply removed in the digital terrain modelling process. Therefore,
a common practice is to manually mark them within the raw dataset and to add them to the finalized m odel. Here we propose
a machine-learning approach to highlight regions that include archaeological features within 3D point clouds. It is based on the
assumption that such features will present an anomaly within the surface. Therefore, the proposed method learns to reconstruct
the surface from the acquired point cloud and then compares the reconstructed surface to the original one. In this way, a large
error will signify an anomaly, i.e., a feature of interest within the point cloud. We demonstrate the proposed method on terrestrial
laser scans of desert kites. These large ancient desert traps are found across the Middle-East and Central Asian arid and semi-arid
regions. Their unique construction, made of two low long walls that converge into an enclosure, makes it difficult to distinguish
them terrestrially. We show that using the proposed method, we can highlight the kites within the raw point cloud, without the need

of an expert input and without labelled information.

1. Introduction

The utilisation of 3D point clouds for archaeology grows expo-
nentially over the last two decades (Vinci et al., 2024). These
point clouds are mostly used to document the archaeological
site, to enhance its visualization, and to put it into topograph-
ical context (Cohen et al., 2020; Vinci et al., 2024; Sylaiou et
al., 2025). Many of the documented sites are either embedded
or partially embedded within the topography, i.e., they are to
some degree part of the ground (gtular et al., 2021; Vinci et al.,
2024). As a consequence, these sites are either wrongly classi-
fied as terrain, filtered out from the digital terrain model (DTM),
or are simply misrepresented (Stular et al., 2021). Overcoming
this, most applications manually detect the archaeological fea-
tures and add them to the DTM (Lozi¢ and Stular, 2021).

Recently, more and more studies aim to automate the identific-
ation archaeological features within 3D point clouds. These are
usually applied on DTMs that were generated from the point
clouds. For example, Risbgl et al. (2023) inspected a series of
maps created from post-processing procedures over the DTM
to highlight remnants of coastal dwellings. Analyses such as
analytical hillshading, sky-view factor, openness, or local dom-
inance were used for the task. Automating the detection, Tou-
mazet et al. (2017) proposed a semi-automatic approach for the
detection of grazing structures (“tras”). First, an archaeolo-
gist identifies one representative structure in the DTM. Then,
potential structures in the data are found based on their mor-
phology (e.g., have hollow parts). Lastly, a cross-correlation is
estimated between candidates and the extracted representative.
Lately, Wang et al. (2024) proposed a deep learning approach
to detect old city walls that are partially embedded within the
topography. Based on expert’s labelling of the DTM the authors
trained a network to identify the location of the walls. Nonethe-

less, these methods still require expert input in order to provide
good results. Therefore, they are site/feature specific and can
hardly be generalized to other settings. Moreover, as the ana-
lyses are DTM-based, they are carried out on data which are
reduced both in dimensionality (3D to 2.5D) and quality (i.e.,
interpolated data).

In this paper we propose an anomaly-based method to high-
light embedded and partially embedded archaeological features
in 3D point clouds. The proposed approach is driven by the
fact that such features present an anomaly within the generally
continuous and smooth landscapes. Therefore, we use a deep
neural network to predict small parts of the landscape. The de-
viation between the actual and the predicted surface is inter-
preted as a measure of saliency/anomaly for that area. In this
way, the proposed method is unlimited to specific objects or
forms, nor to specific topographic settings. We demonstrate the
proposed method to highlight desert kites in two different sites.
These kites are large ancient stone constructions, presumably
made for animal hunting or domestication purposes (Crassard
et al., 2022; Nazari, 2024). They are characterized by long low
walls and an enclosure (aka. head), both correspond to the topo-
graphy (Arav et al., 2015). As such, they are embedded within
the terrain and are difficult to distinguish. We show that the pro-
posed method, applied directly to the raw point clouds, requires
no expert intervention, is almost completely automatic, and is
able to highlight both kites and other important environmental
features.

2. Methodology

We seek to highlight archaeological features in point clouds,
focusing on those that are embedded or semi-embedded within
natural environments. Assuming that such features stand out

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-M-2-2025-13-2025 | © Author(s) 2025. CC BY 4.0 License. 13



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-M-2-2025
30th CIPA Symposium “Heritage Conservation from Bits:
From Digital Documentation to Data-driven Heritage Conservation”, 25—29 August 2025, Seoul, Republic of Korea

from their local surroundings, we define them as “salient re-
gions”, i.e., conspicuous areas in the data. Hence, we can use
saliency detection methods to highlight archaeological features.

Works that aim to highlight salient regions in 3D point clouds
are scarce. Handcrafted works usually search for an abrupt
change in normal and/or curvature within a local neighbour-
hood (Ding et al., 2019; Hao et al., 2019; Arav and Filin, 2020;
Arvanitis et al., 2022). In such schemes, there is a higher sensit-
ivity to local variations, and hence to noise and rugged surfaces,
which are common in open archaeological settings. Machine-
learning based approaches mostly use pre-trained models, nor-
mally on small objects, where salient regions are labelled in
advance (Zheng et al., 2019; Jiang et al., 2023). Here we
use the approach proposed by Arav et al. (2025). In this
method, neither labelling nor other external input are required.
Moreover, it is fairly robust to measurement noise. In the fol-
lowing, we describe the principles of the method.

2.1 Saliency estimation in 3D point clouds by anomaly de-
tection

To evaluate the reconstruction error as a saliency score, we use a
3D convolutional neural network (CNN) to reconstruct the sur-
roundings of all points based on minimal information. When
the surroundings are regular, the network will be able to recon-
struct the surface with low reconstruction error. In cases where
a feature of interest exists the surroundings will be irregular.
Then, the network will be unable to reconstruct the surface and
will yield a high reconstruction error.

As minimal information, we use a “shell” of a point’s neigh-
bourhood. The size of the neighbourhood (n) is defined by the
user, according to the approximate minimal size of the features
of interest. The shell (S; for point ¢ ) is defined as the outer
ring of the neighbourhood. The thickness of the shell (m) is
predetermined by the user.

Training. Randomly selected points and their corresponding
shells are automatically chosen from the point cloud. These
are used to train the reconstruction network R. The network’s
parameters are obtained by minimizing the reconstruction error
R(‘A/i, Vi), with V; and V; the predicted and measured inner part
of the shell, respectively. This approach has a major advantage,
as it does not require any manually generated reference sets to
train R. It should be mentioned that as the network is trained to
reconstruct ‘regular’ surfaces and in each scene this ‘regularity’
might be different. Therefore, training has to be conducted for
scenes with different terrain characteristics.

Reconstruction and reconstruction error. The network R
predicts the values of V; based on the shell S;. Then, the error,
interpreted as the saliency score &;, is estimated by

& = R(Vi, Va). M

Validation and fine-tuning of the network. To stop the
training process and to fine-tune the hyper-parameters, we use
two subsets of the point cloud. One is composed of points that
are expected to have high saliency scores (H), and another com-
posed of points that are expected to have lower scores (L). Us-
ing these subsets, a saliency ratio 7 is defined:

p=32 )

with £ the mean saliency score for points with a high expected
saliency scores and £, the mean saliency score for those with a
low expected saliency. Ratios that are larger than 1 suggest that
the mean estimated saliency scores in H is higher than those in
L, which is the expected result. As these ratios approach 1, the
distinction between the two regions decreases. When the ratio
is smaller than 1, the prediction still requires more training, as
regions that are expected to be with lower values yielded higher
ones, and vice versa.

2.2 Implementation

We use the open-source implementation of Arav and Wittich
(2023). There, the point cloud is represented by a voxel grid.
Thus, the neighbourhood of a point p; is of size n X n X n, such
that V; is centred at p;. Only voxels with more than 2 points are
considered as non-empty voxels and are used for training.

The shell thickness (m) is defined by the number of voxels that
compose the shell. Therefore, its actual size also depends on
the voxel size used to voxelize the point cloud.

The capacity of the network is parametrized by the parameter f,
which describes the number of feature maps in base resolution.

2.3 Quality assessment

Measuring the performance of saliency scores is difficult. This
is because the success rate cannot be easily quantified and may
depend on user’s understanding of the data (Vinci et al., 2016).
Here we use saliency ratio for quantitative evaluation, which
was suggested in Arav et al. (2025). Additionally, we visually
inspect the results.

Using the saliency ratio defined in Eq. 2, we choose a different
group of subsets H and L. Using this group, the saliency ratio is
estimated so that ratios larger than 1 represent a good outcome
of the proposed method, whereas those smaller than 1, suggest
low performance. This is because as regions that should have
been with higher scores received relatively low ones, and vice
versa.

3. Study sites

Desert kites (aka. ‘kites’) are large stone constructions made
of two long low walls. These walls (‘arms’), which can be
several kilometres long, converge into an enclosure (‘head’)
(Barge et al., 2022; Crassard et al., 2022; Nadel et al., 2024;
Nazari, 2024). Such kites are found across the Middle East-
ern and Central Asian arid and semi-arid margins at different
distributions (Abu-Azizeh et al., 2021; Barge et al., 2023). De-
fining the variability and structure of these desert kites help to
better understand their functionality from the Neolithic to sub-
contemporaneous times.

Despite their massive size, they are hardly visible from the
ground (see Fig. 1a and Fig. 2a as examples). Therefore, most
of desert kites documentation is carried out using satellite im-
ages, where specific construction details (e.g., stone size and
arrangement or specific topographical settings) are left unrep-
resented.

In this paper, we focus on two kites in Southern Israel: Samar
East (SE) and Pitam (PIT) (for specific locations see Nadel et
al., 2010). One lies in a relatively planer area and the other are
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Figure 1. SE site. (a) Picture of one of the kite’s arms, with a guiding arrow (credit: Dani Nadel); (b) the acquired point cloud. White
circles are scanning positions. The arrows point to the arms and head of the kite.

Figure 2. PIT site. (a) The kite’s arms (marked with a arrows; credit: Dani Nadel); (b) the acquired point cloud. White circles are
scanning positions. The arrows point to the arms and head of the kite.

in a hilly region. The kites were documented during a terrestrial
laser scanning campaign carried out in 2014 with a Leica Scan-
station C10 (Arav et al., 2015). Scanning characteristics for
both sites are summarized in Table 1.

3.1 Samar East kite (SE)

SE lies in a relatively flat area with low desert vegetation
(Fig. 1a). The kite’s arms are 114 m and 137 m long (left and
right in Fig. 1b, respectively), but parts closer to the head are
missing. The wall of the right arm is about 0.3 m high, but can
be as low as 0.1 m or as high as 0.5 m in some parts. The left
arm has suffered more damages and therefore less continuous.
Its height varies between 0.1 m-0.2 m. The head is partly pre-
served to its original height of 1.2 m. It lies on the edge of a
small wadi (ravine) in which desert vegetation grows.

The site was scanned from six positions: five along the arms

and one within the head (Fig. 1b and Table 1).

3.2 Pitam kite (PIT)

The Pitam kite lies in a hilly terrain of hard limestone with little
vegetation (Fig. 2a). The kite’s arms are 77 m and 97 m long
(left and right in Fig. 2b, respectively). The right arm descends
along a steep slope, while the left begins on a plateau, crosses a
narrow rugged wadi, and then turns sharply (almost by 90°) into
the head. Both arms height varies between 0.12 m to 0.3 m. An
excavation at the head revealed that a rampart and not a wall
was built around the head to capture the animals (Arav et al.,
2015; Nadel et al., 2021).

Eight positions were used to scan this kite, one of them within
the head and the rest along the arms (Fig. 2b and Table 1)
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Site Type No. of points  Point density Area No. of
[Millions] [pts/mz] [m?] scan positions

SE  Planar 11.601 270 150 x 210 6

PIT Hilly 15.125 300 500 x 300 8

Table 1. Scanning characteristics of the study sites.

4. Results and Discussion

We test the applicability of the proposed method to highlight
the kites’ features in the acquired terrestrial scans. We identify
four important hyper-parameters: the number of features in
base layer (f), the number of voxels in the voxel grid size (n),
the voxel size, and the number of voxels in the grid shell (m).
In both sites, 9 salient (H) and 9 non-salient (L) subsets were
manually extracted. Of these, 6 were used for training and 3 for
testing.

To choose f and n, we follow Arav et al. (2025) and run a set
of experiments with a different number of features in base layer
(f = 16, and 32) and at different voxel grid sizes (n = 8, 24,
and 32). In these experiments, m is fixed to 3 voxels and the
voxel size to 0.1 m, which is the approximate average point
spacing in both datasets.

4.1 SE Kkite

Table 2 shows the average saliency ratio each combination of
voxel/feature number has yielded for SE site. It can be seen that
for all combinations, saliency scores are higher than 1. This im-
plies that saliency scores evaluated by the proposed method are
indeed higher where expected. The highest ratio, i.e., the com-
bination that yielded the largest difference between salient and
non-salient, was with 16 features in base layer and 32 voxels in
the voxel grid.

Using this combination (f = 16, n = 32), we evaluated the
saliency score for each point (Fig. 3). First, it can be seen that
areas with lower point density received higher saliency scores.
As the surface in these areas could not be reconstructed (too
little points), the reconstruction error was high, leading to high
saliency scores.

Within the region of interest, which was scanned at higher res-
olution, it can be seen that the right arm has yielded high sa-
liency scores (Fig. 3a and (d)), as well as the head (a, b). Ve-
getation, rocks, and topographical variations are also marked
with slightly higher saliency values (Fig. 3b). These do not ex-
ceed the score of 0.5. When comparing the saliency scores of
the arms, it can be noticed that the left one is of lower scores
(around 0.4 in some parts, compared to 1 in the right arm;
Fig. 3a). This is probably due to the fact that the left arm is
lower in height compared to the right arm (average of 0.15 m
vs. 0.30 m, respectively). Indeed, in areas where the left arm is
higher, a saliency score of 1 was received (Fig. 3 (a) and (d)).
This is an expected result, as it shows that as the signature of
the entity in the point cloud is stronger, the certainty of its iden-
tification is higher.

Some linear elements are highlighted with a score of approx.
0.4 (see examples marked with magenta arrows in Fig. 3a and
(c)). These are possibly pathways that are used by current herds
to cross the kite (Nadel et al., 2021). Note that such pathways
are unnoticeable by simple visual examination of the raw point
cloud.

f 16 32
n
16 1.31+£0.04 1.31+£0.01
24 2.1640.02 2.16+£0.02
32 2.61+0.01 2.48+0.02
32 3.16 £0.01  Voxel size 1 m
32 3.01 £0.01 m =6

Table 2. Saliency ratio (average and standard deviation over 2
runs, a-dimensional) in SE at voxel size 0.1 m and shell width of
3 voxels. The last two rows show the saliency ratio for voxel
size 1 m and shell width of 6, respectively. f is the number of
features in base layer and n is the voxel grid size length,
represented by the number of voxels.

/ 16 32
n
16 1.36+0.02  1.36+0.01
24 1.554+0.01  1.56+0.01
32 1.70+0.01 1.68+0.02
32 3.01 £0.02 m=~6

Table 3. Saliency ratio (average and standard deviation over 2
runs, a-dimensional) in PIT at voxel size 0.1 m and shell width
of 3 voxels. The last row shows the saliency ratio for shell width
of 6. f is the number of features in base layer and 7 is the voxel
grid size length, represented by the number of voxels.

Fig. (4) shows saliency scores that were evaluated using f = 16
and n = 32, but with different voxel size (a) and shell width (b).
It can be seen that when a larger voxel size was used for the
analysis, a similar image is received (Fig. 4a). This is despite
the higher saliency ratio (3.16; Table 2) that was achieved.

When a larger shell width was chosen (m = 6), a saliency ratio
of 3.03 was obtained. This value is only slightly different from
the one with 1 m voxel size (Table 2). Fig. (4b) shows that the
saliency scores in this configuration were overall lower. Still,
relatively speaking, the same image was obtained: the same
regions are highlighted or marked non-salient (Fig. 4). This
shows that in this case, even though the network managed to
reconstruct the surface better, its ability to identify embedded
entities does not increase.

4.2 PIT kite

The average saliency ratio each combination of voxel/feature
number yielded for the PIT kite scan is shown in Table 3. Sim-
ilar to the results in SE, saliency ratios are higher than 1 and
the highest ratio was achieved for f = 16 and n = 32. How-
ever, the ratio values in this dataset are much lower. Also, the
difference between the configurations is less distinguishable.

As the relatively low saliency ratio suggests, the network was
able to reconstruct the surface only to a limited extent. The
saliency scores evaluated for each point were in most regions
larger than 0.5 (Fig. 5a). Higher saliency scores were given to
areas with lower point density, similar to the effect seen in SE.
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Saliency score [N .
0

Figure 3. Estimated saliency scores for SE point cloud using f = 16, n = 32 and shell size of 3 voxels and voxel size of 0.1 m. The
white arrows point to the approximate direction of each of the zoomed-in regions. (a) An overview of the entire SE point cloud and the
evaluated saliency scores; (b) zoom-in on the head and the highlighted features within it; (c) zoom-in on the left arm of the kite: higher

walls received saliency scores close to 1 (left), while the others yielded 0.5-0.7. A pathway (marked with magenta arrow) is slightly

highlighted between the walls; (d) zoom-in on the highlighted right arm of the kite.
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Figure 4. Estimated saliency scores in of SE using f = 16, n = 32 and (a) shell size of 3 voxels and voxel size of 1 m; (b) shell size
of 6 voxels and voxel size of 0.1 m.

Since the entire dataset was given higher scores, it was difficult
to visually inspect the results. To improve the visualization,
points that have less than 20 neighbours in a 0.2 m radius were
removed (Fig. 5b). This process revealed the kite’s arms, which
were estimated with high saliency scores of approx. 1. Vegeta-
tion and large rocks also obtained such high saliency scores (see
example in the orange rectangle in Fig. 5b) as well as the wadis
that were scanned (e.g., the one between the arms, Fig. 5a).

The head also received high saliency scores (Fig. 5c). Here, the
top stones in the construction were given scores that are close
to 1, while the lower part yielded scores of approx. 0.5.

Using a shell width of 6 should provide more information for
the network to learn how to reconstruct the surface. Therefore,
we assume that it will improve the performance of the method
in highlighting the kite’s features. We re-train the network with
the configuration of f = 16, n = 32 and m = 6 (voxel size
stays 0.1 m, per the results of SE). Using this configuration, a
higher saliency ratio of 2.01 was achieved (Table 3), as expec-
ted. Fig. (6) shows the saliency score evaluated for each point
in this case. It can be seen that the surface was indeed better
reconstructed. The low point-density regions yielded saliency
scores of up to 0.5, but not more. Unlike the case with m = 3,
some regions were given scores of 0. Still, the kite’s features
are not specifically highlighted. Instead, rocks and vegetation
are marked with scores of approx. 1. This is probably due to
the fact that this kite is completely embedded within the topo-
graphy and has a subtle signature in the point cloud (Fig. 2a).

5. Conclusions

This paper presented an unsupervised method to highlight em-
bedded and semi-embedded archaeological entities within ter-
restrial 3D point clouds. Based on the assumption that such
entities will standout from their surroundings, we evaluate sali-
ency scores as means for their identification. In this way, high
saliency scores are assigned to points that are most likely to rep-
resent archaeological features. To do so, a network is trained to
reconstruct the surface from as little information as possible.

The surface is then reconstructed and compared to the scan.
Higher saliency scores are given to regions that deviate from
the expected reconstructed surface.

Two point clouds of desert kites were used to test the method’s
applicability for archaeological purposes. The first kite has
walls of up to 0.4 m and lies in a flat terrain. The other lies
in a rocky, hilly, terrain with most walls not higher than 0.3 m.
The first kite represented a semi-embedded entity whereas the
second represented an embedded one. Both datasets were com-
posed of several scanning positions, so that point density was
changing drastically throughout the data.

In both sites, the combination of grid size with 32 voxels and
16 features in base layer yielded the highest saliency ratio. En-
larging either the shell width or the voxel size resulted in better
surface reconstruction (i.e., higher saliency ratio). This is prob-
ably because more information was used to learn the surface.
However, these higher ratios did not translate to better identi-
fication of the archaeological entities.

The proposed method was found sensitive to high point density
variations. This is due to the amount of information used for the
network to learn the reconstruction. In regions with low point
density, the number of points in the shell was insufficient for
the reconstruction. On the other hand, at high density regions,
the number of points within the same shell size was sufficiently
informative. The removal of low-density areas from the point
cloud provided improved results, where the kite’s features were
revealed. Nonetheless features such as vegetation and chan-
nels were given high saliency values (e.g., Fig. 3) while other
archaeological features were given lower saliency values (e.g.,
the head in PIT, Fig. 5). Such shortcomings should be further
looked into. As an example, an approach that adapts to point-
resolution may solve false-positive detections.

Despite the complex settings in which the kites lie, the proposed
method was able to identify them to some extent. Not only
that, but it was also able to highlight important environmental
features (like the pathways in SE) that are unidentifiable other-
wise. By giving such features medium-range scores, a measure
of uncertainty can be derived.
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Figure 5. Estimated saliency scores for PIT point cloud using f = 16, n = 32 and shell size of 3 voxels and voxel size of 0.1 m.: a)
for the entire point cloud. The white rectangle encompasses the head area; b) excluding points with lower density (less than 20 points
in a 0.2 m radius). The orange rectangle is an example for larger rocks in the vicinity. ¢) zoom in on the head

: : jv
Saliency score NN . L 25m
0 1

Figure 6. Estimated saliency scores in of PIT using f = 16,
n = 32, a shell size of m = 6 and voxel size of 0.1 m.

The proposed method is data-driven and does not target specific
entities or environment. Moreover, it does not require neither
external information nor labelling. This method is therefore
a first step towards the automatization of 3D identification of
subtle archaeological entities in complex environment.
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