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Abstract

3D Gaussian splatting has shown promise for high-fidelity 3D modeling in cultural heritage d ocumentation. However, applying 
3DGS to cultural artifacts faces challenges, including image alignment errors in dynamic capture environments and background 
interference from scene-level reconstruction. We propose an optimized 3DGS framework tailored for artifact modeling, introducing 
two key innovations: (1) COLMAP-free for robust image alignment under non-static conditions, and (2) implementing targeted 
isolation to separate artifacts from extraneous backgrounds. Our approach enhances reconstruction quality, preserving intricate 
geometric details and critical textures for cultural artifacts. Comprehensive evaluations against traditional photogrammetry and 
standard 3DGS demonstrate superior performance in accuracy and visual fidelity. Through enhanced 3D Gaussian splatting, the 
proposed method achieves precise 3D documentation of cultural artifacts, enabling diverse digital applications.

1. Introduction

3D modeling has emerged as an indispensable tool for preserving
and utilizing cultural artifacts. This approach facilitates accur-
ate documentation of the artifacts’ current state and converts
the artifacts into digital assets for various applications. Recent
advances in computer graphics have highlighted novel view
synthesis (NVS) as a transformative approach to 3D modeling.
As shown in Figure 1, NVS generates photorealistic images
from novel viewpoints using limited 2D image data. Methodo-
logies such as neural radiance fields (NeRF) (Mildenhall et al.,
2021) and 3D Gaussian splatting (3DGS) (Kerbl et al., 2023)
have received substantial interest from the research community.
(Murtiyoso and Grussenmeyer, 2023, ?)
The rapid evolution of NVS has catalyzed the adoption of meth-
ods based on artificial intelligence for 3D modeling in cul-
tural heritage (Murtiyoso and Grussenmeyer, 2023; Croce et
al., 2023). Among these approaches, 3DGS stands out by en-
abling real-time rendering and high-fidelity visualization. 3DGS
employs structure-from-motion (SfM) algorithms (Schonber-
ger and Frahm, 2016) to align 2D images and leverages point
clouds to represent 3D objects through Gaussian distributions.
These distributions facilitate exceptional reproduction of intric-
ate geometric details and surface textures, thereby overcoming
fundamental limitations of NeRF and achieving superior per-
formance in representing fine-grained details critical for cultural
artifacts.

Originally developed for general scene representation, 3DGS
presents significant challenges when applied to object-level tar-
gets, such as cultural artifacts. First, image alignment frequently
fails in dynamic capture environments. 3DGS depends on SfM
processing through COLMAP (Schönberger et al., 2016), assum-
ing a static subject with a moving camera. However, inconsistent
repositioning of artifacts or camera position changes during cap-
ture sessions cause significant image alignment errors that de-
grade reconstruction quality. Second, 3DGS inherently captures
entire scenes rather than isolated objects. Consequently, back-
grounds such as exhibition halls or conservation laboratories fre-
quently appear in artifact captures, introducing extraneous visual
elements that detract from the digital representation. Third, cul-
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Figure 1. Overview of novel view synthesis.

tural artifacts often have regions with limited or no photographic
coverage due to access constraints or varying levels of photo-
graphic expertise, resulting in incomplete reconstructions with
missing data.

To address these critical challenges, we propose a modified
3DGS approach specifically optimized for cultural artifact di-
gitization. Our method introduces two key innovations: (1)
replacing COLMAP with DUSt3R (Wang et al., 2024) to en-
hance image alignment accuracy for non-static capture scenarios
substantially, (2) implementing targeted isolation techniques us-
ing SAM2 (Ravi et al., 2024) that effectively separate artifacts
from their surroundings during the modeling process, and (3)
developing a data completion strategy based on GaussianObject
(Yang et al., 2024) to reconstruct missing regions where image
data is insufficient. To evaluate the effectiveness of our method,
we conduct comprehensive comparisons with traditional photo-
grammetry and standard 3DGS. These methodological advances
aim to significantly enhance the digital preservation and utiliza-
tion of cultural heritage assets, potentially establishing a novel
paradigm for cultural heritage research that seamlessly integrates
technical innovation with preservation.

2. Related Works

2.1 Photogrammetry

Photogrammetry has dominated the digital documentation of
cultural heritage for decades through the ability to convert 2D
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Figure 2. Framework of our proposed method.

images to 3D models (Mikhail et al., 2001). The SfM algorithms
(Schonberger and Frahm, 2016) used in COLMAP (Schönberger
et al., 2016), Metashape (Agisoft LLC, 2023), and Reality Cap-
ture (Capturing Reality, 2023) estimate camera positions, create
point clouds, and transform point clouds into 3D models through
meshing. Researchers have successfully applied photogram-
metry to various cultural artifacts, including museum objects of
various materials (Nicolae et al., 2014) and small-scale artifacts
measuring 5-10 cm (Sapirstein, 2018).

Despite widespread adoption, photogrammetry encounters sev-
eral significant limitations. Photogrammetry cannot reconstruct
viewpoints absent from the original images and requires nu-
merous images to achieve accurate 3D reconstructions. The
quality of the resulting models depends on precise calculations
of overlapping regions between captured images, which require
considerable operator expertise. The requirement of specialized
skills constitutes a substantial barrier to broader implementation
in cultural heritage preservation initiatives. (Condorelli et al.,
2021, ?, Murtiyoso and Grussenmeyer, 2023)
2.2 Novel View Synthesis

NeRF (Mildenhall et al., 2021) appeared as an innovative tech-
nology for NVS, utilizing neural networks to render scenes from
arbitrary viewpoints based on 2D images. Researchers have
effectively applied NeRF to digitize artifacts using relatively few
images, allowing preservation, virtual exhibitions, and archae-
ological analysis (Condorelli et al., 2021; Croce et al., 2023;
Murtiyoso and Grussenmeyer, 2023). However, computational
complexity causes excessively long training and rendering times,
creating significant constraints for practical implementation in
real-world applications.

3DGS (Kerbl et al., 2023) recently emerged as a methodology
to address the computational bottlenecks of NeRF, allowing real-
time rendering while maintaining visual quality. This approach
significantly improves rendering efficiency and detail represent-
ation capabilities. However, applications of 3DGS in cultural
heritage focus primarily on large-scale archaeological sites and
architectural environments (Clini et al., 2024; Wang and Weijia,
2024), with limited case studies involving individual artifacts.
Some researchers have attempted to extract an object from 3D
scenes (Dahaghin et al., 2024), yet this method cannot capture

base surfaces, limiting complete artifact documentation. Fur-
thermore, existing studies fail to resolve image alignment errors
when capturing artifacts with moving cameras and repositioned
objects. This situation also creates problems where background
elements surrounding the artifacts appear in the resulting mod-
els. These technical limitations hinder the effective utilization
of 3DGS for the precise documentation of heritage artifacts, par-
ticularly in museums and research settings. (Clini et al., 2024, ?,
?)

3. Method

We propose a modified 3DGS approach optimized for cultural
artifact documentation that addresses three key challenges: in-
accurate image alignment in non-stationary acquisition envir-
onments, unwanted background elements in artifact reconstruc-
tions, and incomplete data with insufficient photographic cover-
age. Our framework is detailed in Figure 2.

3.1 Preliminary

3DGS represents scenes using a collection of 3D Gaussian prim-
itives (Kerbl et al., 2023). Each Gaussian is defined by a center
position µ ∈ R3, a covariance matrix Σ ∈ R3×3, an opa-
city α ∈ [0, 1], and spherical harmonics coefficients for view-
dependent appearance. This anisotropic representation enables
precise modeling of complex surfaces, making 3DGS highly suit-
able for reconstructing cultural heritage artifacts with intricate
details.

The 3DGS pipeline begins with SfM (Schonberger and Frahm,
2016) processing via COLMAP (Schönberger et al., 2016) to
estimate camera parameters and generate an initial point cloud.
These points initialize the 3D Gaussians, which are optimized
to minimize the discrepancy between rendered and ground-truth
images. During rendering, each 3D Gaussian is projected onto
the 2D image plane, with the Gaussian contribution determined
by a projected mean µ′

i ∈ R2 and covariance Σ′
i ∈ R2×2,

computed as Σ′
i = J iΣiJ

T
i , where J i ∈ R2×3 is the Jacobian

of the projection function at µi. The rendered image at a pixel
x ∈ R2 is obtained by alpha-blending the contributions of depth-
sorted Gaussians:
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Figure 3. Architecture of DUSt3R.

I(x) =

N∑
i=1

ciαiN (x;µ′
i,Σ

′
i)

i−1∏
j=1

(1− αj), (1)

where ci ∈ R3 is the view-dependent color derived from spher-
ical harmonics.

The optimization of Gaussian parameters µi, Σi, ci, αi is per-
formed through gradient descent to minimize a photometric loss
function:

L = (1− λ)L1 + λLD-SSIM, (2)

where L1 represents the L1 loss between the rendered image I
and the ground truth image, LD-SSIM computes the structural sim-
ilarity loss, and λ is a weighting factor. Then, an adaptive density
control adds Gaussians in regions with high reconstruction error
and removes redundant Gaussians, optimizing computational
efficiency for complex artifact geometries.

3.2 Image Alignment

The initialization phase employs DUSt3R (Wang et al., 2024) to
generate point cloud representations from input images, address-
ing critical limitations of traditional 3DGS workflows. DUSt3R
eliminates the dependency on prior camera calibration and view-
point pose estimation while providing robust image alignment
in dynamic capture scenarios. Standard 3DGS implementations
rely on COLMAP for Structure-from-Motion processing and
assume static scenes. However, cultural artifact documentation
often involves varying camera positions and object reposition-
ing during capture sessions, causing COLMAP-based alignment
to fail. DUSt3R directly addresses these challenges by per-
forming robust correspondence estimation and depth prediction
without requiring static scene assumptions. The method integ-
rates DUSt3R as a direct replacement for COLMAP in the 3DGS
pipeline, with the overall architecture illustrated in Figure 3.

DUSt3R analyzes pairs of RGB images to regress correspond-
ing 3D pointmaps. Figure 3 shows that the network consists
of two identical branches, each containing a vision transformer

(ViT) encoder, a transformer decoder, and a regression head.
For input images I10 , I

2
0 ∈ RW×H×3, a shared ViT encoder

analyzes the images in a Siamese configuration and generates
token representations F 1, F 2 ∈ RN×D, where N represents
the number of tokens and D denotes the feature dimension.
ViT-Base decoders, equipped with cross-attention mechanisms,
process these representations to enable continuous information
exchange between views. The decoders generate aligned 3D
pointmaps X1,1, X2,1 ∈ RW×H×3, defined in the coordin-
ate frame of I10 , along with corresponding confidence maps
C1,1, C2,1 ∈ RW×H×1.

Building on pairwise predictions, DUSt3R applies global align-
ment in multi-view scenarios to create a cohesive 3D scene
representation. For a set of input images {I10 , I20 , . . . , IN0 },
DUSt3R constructs a connectivity graph G(V, E), where ver-
tices V represent images and edges E indicate image pairs
with sufficient visual overlap. DUSt3R determines overlap
using off-the-shelf image retrieval or confidence-based filter-
ing through the network, as detailed in Figure 3. For each
edge e = (n,m) ∈ E , DUSt3R computes pairwise pointmaps
Xn,n, Xm,n ∈ RW×H×3 and confidence maps Cn,n, Cm,n ∈
RW×H×1. Global alignment optimizes a set of world-coordinate
pointmaps {χn | n = 1, . . . , N} by minimizing 3D projection
errors. This approach defines the per-pixel projection error for
each edge e and vertex v as:

Lv,e
i = Cv,e

i ∥χv
i − σePeX

v,e
i ∥22 , (3)

and formulates the global optimization as:

χ∗ = arg min
{χn},{Pe},{σe}

∑
e∈E

∑
v∈{n,m}

W ·H∑
i=1

Lv,e
i , (4)

where Pe ∈ R3×4 and σe > 0 represent the relative pose and
scale for edge e, respectively, with the constraint

∏
e∈E σe = 1

to ensure scale consistency. This optimization facilitates robust
3D reconstruction of cultural artifacts using a pinhole camera
model.
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3.3 Cultural Artifact Modeling

3.3.1 Mask Guided Optimization We incorporate mask-
guided optimization to separate artifacts from surroundings us-
ing SAM2 (Ravi et al., 2024). This approach reduces noise in
the 3D reconstruction pipeline by providing clean inputs, focus-
ing solely on cultural artifacts of interest. The implementation
follows a process where SAM2’s transformer-based attention
mechanisms identify artifact boundaries and automatically gener-
ate masks that isolate target objects from non-relevant elements.
For an input RGB image Ii0 ∈ RW×H×3, SAM2 generates a
segmented output image Ii ∈ RW×H×3 through the following
process:

Ii = SAM2(Ii0) = Ii0 ⊙M, (5)

where M ∈ {0, 1}W×H is the binary mask produced by SAM2,
identifying the foreground artifact, and ⊙ denotes element-wise
multiplication with M broadcast across the color channels of Ii0.

SAM2 uses a hierarchical vision transformer to extract feature
embeddings from each frame and references memories across
multiple images to maintain consistent artifact segmentation.
The model’s multi-scale processing handles images captured
from different viewpoints, which 3D modeling requires. SAM2
segments artifacts across camera angles spanning 360° horizont-
ally and ±45° vertically while maintaining consistent boundary
detection. The hierarchical feature extraction recognizes arti-
fact characteristics regardless of perspective changes, enabling
viewpoint-invariant segmentation. This segmentation keeps only
the artifact while eliminating background clutter.

3.3.2 Gaussian Repair We adopt the Gaussian repair model
from the GaussianObject framework (Yang et al., 2024) to ad-
dress regions with limited or inconsistent observations in the
reconstruction of cultural artifacts. This approach produces
high-fidelity 3D models by correcting rendering artifacts such
as missing textures, distorted surfaces, and inaccurate geomet-
ric details caused by incomplete photographic coverage. The
Gaussian repair model employs a 2D diffusion-based architec-
ture (Rombach et al., 2021) to restore intricate details across
multi-view scenarios with varying camera angles and lighting
conditions.

The training process applies a leave-one-out strategy to create
paired data for multi-view inputs. For a reference image set
I ref = {Ii}Ni=1 (where N > 4), we train a preliminary 3DGS
using all images except Ii. We generate a corrupted rendering
I ′i for the corresponding view, reflecting missing information.
To simulate artifacts common in artifact reconstruction, we in-
ject 3D noise into Gaussian attributes sampled from a Gaussian
distribution ϵ ∼ N (0, σ2). The repair model adjusts the noise
parameters to mimic surface irregularities and texture loss, pre-
valent in complex or reflective artifact geometries. This process
produces a dataset pairing corrupted renderings I ′i with reference
images Ii, capturing multi-view reconstruction errors.

The Gaussian repair model utilizes a ControlNet architecture
(Zhang et al., 2023) to condition a pre-trained diffusion model on
corrupted renderings I ′i . The repair model leverages paired data
with I ′i to train artifact detail reconstruction. During training,
the repair model minimizes a denoising loss:

(b) Back point cloud fragment(a) Front point cloud fragment

Figure 4. Failed alignment of Chimi Using RealityCapture.

(b) Depth map(a) RGB image (c) 3D reconstruction

Figure 5. Images alignment of Chimi using DUSt3R.

Ltune = EIi,I
′
i
,t,ϵ

[∥∥ϵ− ϵθ
(√

αtIi +
√
1− αtϵ, I

′
i, t

)∥∥2

2

]
,

(6)

where ϵθ denotes the noise predictor, t represents the diffusion
timestep, αt signifies the scheduler coefficient and I ′i acts as
the conditioning image. This loss enables mapping low-quality
renderings to high-fidelity images, preserving features like en-
gravings and weathered surfaces. The training process fine-tunes
ControlNet weights, potentially using LoRA (Hu et al., 2022)
for efficiency, while keeping the diffusion backbone frozen to
optimize artifact-specific details and maintain generalization.

After training, we freeze the Gaussian repair model and apply
the model to correct problematic rendered views. Distance-
aware sampling selects views with high deviation from reference
images, often indicating sparse observations or complex geo-
metry. We process corrupted renderings to generate repaired
images, recovering missing details and correcting distortions.
We optimize 3D Gaussians using repaired images and SAM2-
segmented reference images. This iterative refinement improves
the reconstruction quality in underrepresented regions, ensuring
that the final 3D model accurately represents the geometry and
appearance of the artifact.

4. Experiments

4.1 Implementation Detail

Our framework is built on GaussianObject (Yang et al., 2024).
Instead of the GaussianObject’s visual hull initialization strategy,
we utilize DUSt3R (Wang et al., 2024) to handle a large number
of images. To process masks, the framework incorporates SAM2
(Ravi et al., 2024). The entire process was tested on two A6000
GPUs.

4.2 Dataset

To evaluate the effectiveness of the proposed method on cultural
artifacts, we employ six cultural artifacts from two museums.
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Name of Artifact Institution # Images Resolution
Wooden Carving of Human Face NMK 257 8688×5792 pixel
Celadon Incense Burner with Lion-shaped Lid NMK 275 8688×5792 pixel
Gilt-bronze Pensive Maitreya Bodhisattva NMK 782 8688×5792 pixel
Patterned Tile from Oe-ri BMK 185 8688×5792 pixel
Bronze Miniature Pagoda BMK 461 8688×5792 pixel
Chimi (Ridge-end Roof Tile) BMK 167 8688×5792 pixel

Table 1. Details of cultural artifacts used in our experiments.

Name of Artifact # Images RealityCapture Colmap DUSt3R

Wooden Carving of Human Face
2 ✓

10 ✓
100 ✓
257

Celadon Incense Burner with Lion-shaped Lid
2 ✓

10 ✓
100 ✓
275 ✓ ✓

Gilt-bronze Pensive Maitreya Bodhisattva
2 ✓

10 ✓
100 ✓
782 ✓ ✓

Patterned Tile from Oe-ri
2 ✓

10 ✓
100 ✓
185

Bronze Miniature Pagoda
2 ✓

10 ✓
100 ✓
461

Chimi (Ridge-end Roof Tile)
2 ✓

10 ✓
100 ✓
167

Table 2. Alignment performance of COLMAP, RealityCapture, and DUSt3R across image counts.

The National Museum of Korea (NMK) provided three artifacts,
and the Buyeo Museum of Korea (BMK) contributed the remain-
ing three artifacts. These artifacts represent various materials
and geometric complexities, providing comprehensive evalu-
ation cases. Table 1 presents detailed information about each
artifact.

4.3 Image Alignment

To evaluate the robustness of different image alignment meth-
ods, we compared the performance of COLMAP (Schönberger
et al., 2016), RealityCapture (Capturing Reality, 2023), and
DUSt3R across varying numbers of input images. We conduc-
ted experiments with 2, 10, 100 images per artifact, and all
captured images. As shown in Table 2, both RealityCapture
and COLMAP failed to properly align images in all experi-
ments except for static camera environments (Celadon Incense
Burner with Lion-shaped Lid and Gilt-bronze pensive Maitreya
Bodhisattva). Although there was insufficient overlap between
images, COLMAP and RealityCapture exhibited poor alignment
capability even in static environments.

Figure 4 demonstrates this limitation clearly, where the Chimi
appeared as two separate fragments because the algorithms could
not establish correspondences between the front and back re-
gions due to a lack of overlapping visual information. This high-
lights the fundamental limitations of conventional SfM methods
in cultural heritage documentation. These limitations typically
necessitate time-consuming manual alignment procedures or
extensive post-processing to remove noise artifacts, significantly
increasing the workload for professionals.

In contrast, DUSt3R successfully aligned artifact images in
most experimental settings, demonstrating superior robustness
in handling challenging capture conditions. Figure 5 illustrates
how DUSt3R accurately recognized depth and correctly aligned
even pairs of images with minimal overlap, a scenario where
traditional methods typically fail. However, we observed that
DUSt3R’s high GPU memory requirements became a limiting
factor when processing larger image sets. Specifically, when
processing more than 100 images, DUSt3R could not complete
the entire dataset analysis due to memory constraints. This
limitation indicates that while DUSt3R provides significant ad-
vantages for artifact image alignment, large-scale projects must
address practical computational resource considerations.

4.4 3D Modeling

4.4.1 Qualitative Results Figure 6 compares the visual res-
ults of 3D reconstruction quality. RealityCapture generates a
point cloud representation that captures only color and shape
information. This method struggles with extraneous elements
because RealityCapture incorporates unnecessary background
and poorly aligned sections into the final shape. For example,
the Patterned Tile from Oe-ri, captured by flipping the artifact,
causes RealityCapture to render the floor surface both below and
above the artifact, leading to visual confusion.

The standard 3DGS results demonstrate the capability to render
color and shape in real-time as lighting conditions change within
a viewer. Despite this advancement, 3DGS exhibits limitations
similar to RealityCapture. Specifically, the Bronze Miniature
Pagoda, captured by flipping the artifact, undergoes image align-
ment based on the floor surface, resulting in 3DGS rendering the
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(b) RealityCapture(a) RGB image (c) 3DGS (d) Ours

Figure 6. Qualitative comparison of reconstruction methods.

Carving Incense Burner Bodhisattva Patterned Tile Miniature Pagoda Chimi
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RealityCapture 27.34 0.31 25.62 0.26 27.80 0.27 24.89 0.25 23.52 0.26 22.17 0.24
3DGS 28.37 0.40 27.29 0.41 29.55 0.42 28.48 0.38 28.50 0.37 27.61 0.35
Ours 29.36 0.85 30.47 0.91 32.58 0.93 31.59 0.90 28.76 0.87 27.39 0.78

Table 3. Quantitative comparison of reconstruction methods.

pagoda upside down.

In contrast, the proposed method accurately renders essential
information for artifact documentation. The method dynamic-
ally renders color and shape under varying lighting conditions,
eliminates irrelevant background elements, corrects misaligned
sections, and focuses solely on artifact geometry and appear-
ance. The reconstructed artifacts maintain structural integrity
and appear as unified objects without extraneous elements.

4.4.2 Quantitative Results Table 3 presents numerical eval-
uation results using PSNR and SSIM metrics(Wang et al., 2004).
The proposed method consistently outperforms both RealityCap-
ture and standard 3DGS across all artifacts. PSNR values demon-
strate substantial improvements, with the proposed approach
achieving scores ranging from 27.39 to 32.58 dB compared to
RealityCapture’s 22.17 to 27.80 dB and standard 3DGS’s 27.29
to 29.55 dB. The bodhisattva artifact shows the most significant
improvement, with the proposed method achieving 32.58 dB
PSNR compared to 27.80 dB for RealityCapture and 29.55 dB
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for 3DGS.

SSIM scores further validate the superior performance of the
proposed approach. The method achieves SSIM values between
0.78 and 0.93, higher than RealityCapture, which ranges from
0.24 to 0.31, and standard 3DGS, which ranges from 0.35 to
0.42. The incense burner and bodhisattva artifacts demonstrate
robust performance with SSIM scores of 0.91 and 0.93 respect-
ively. These quantitative results confirm that the enhanced frame-
work not only improves visual quality as observed in qualitative
comparisons but also delivers measurable improvements in re-
construction fidelity and structural similarity to ground truth
images.

5. Discussion

The proposed method addresses significant limitations in cultural
artifact documentation but has certain constraints. Diffusion
models may distort original artifact forms during reconstruc-
tion by generating areas that differ from the original. This risk
increases with insufficient images. The method limits diffu-
sion intervention to levels comparable to traditional photogram-
metry’s hole-filling stage. Securing adequate overlapping images
remains critical for accurate documentation since preserving ori-
ginal forms is the primary objective, and diffusion models serve
as supplementary tools.

Future research should improve diffusion model accuracy and fi-
delity to original forms. Retraining models with cultural heritage
datasets could improve results in extreme scenarios with min-
imal image coverage. Training with artifact images would enable
models to avoid arbitrary reconstruction in areas with insuffi-
cient images, instead generating details consistent with cultural
heritage characteristics. Advanced training may reduce inac-
curate detail generation in reconstructed regions and strengthen
reconstruction reliability for cultural heritage applications. En-
hanced accuracy would expand the method’s applicable range to
challenging documentation cases while maintaining fidelity to
original artifact forms.

6. Conclusion

We present an enhanced 3DGS for cultural artifact document-
ation. The approach addresses two key limitations of existing
methods: image alignment errors in non-stationary acquisition
environments and unwanted inclusion of background elements.
We introduce an integrated solution incorporating enhanced im-
age alignment, artifact isolation through mask-guided optimiza-
tion, and an artifact repair model.

Experiments utilizing six cultural artifacts from museums demon-
strate superior performance. The method achieves excellent
detail representation and accurate artifact isolation even with
complex artifacts. The approach maintains structural integrity
while eliminating extraneous elements that traditional methods
struggle to handle.

We make a substantial contribution to the field of digital cultural
heritage preservation and application. Future research will focus
on providing a user-friendly workflow system accessible to non-
experts. The research aims to address computational efficiency
challenges, extend applicability to a broader range of cultural
heritage types, and enhance the accuracy of diffusion models.
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