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Abstract 
This study proposes an innovative methodology for documenting and semantically analysing cultural heritage by integrating 
artificial intelligence (AI) with a photogrammetric 3D model. The case study is the Trajan’s Column in Rome, a monumental 
structure adorned with a continuous helical relief depicting Emperor Trajan’s Dacian campaigns. AI-driven semantic 
segmentation is used to identify key elements (such as human figures, battle scenes and natural motifs) within the digitised 
sculptural narrative. Starting from a high-resolution photogrammetric 3D model, the column’s texture is divided into multiple 
segments and a multimodal large language model (MLLM) is applied to produce context-aware segmentation masks via natural 
language prompts. Results are then projected onto the 3D geometry and visualised through a web-based 3D viewer.  

 a) 

b) 

c) 
Figure 1. The Trajan’s column in Rome, ca 44 m height, located within the forum (a; source: National Geographic); close-up of 
the tale which commemorate Traian's win against the Dacian (b); MLLM-based identification of the Emperor Trajan (repeated 58 
times) within the 200 m long carved frieze (c).   

1. Introduction

In recent years, 3D documentation of Cultural Heritage scenarios 
has been democratised with reliable, efficient and automated 
procedures based on image or range data, acquired from ground 
or UAV platforms (Remondino, 2011; Remondino et al., 2017; 
Stathopoulou et al., 2019; Farella et al., 2022). However, 
automatic semantic enrichment and analysis of such 3D models 
remain an open challenge. Augmenting 3D data with qualitative 
information is crucial for enhancing its accessibility and usability, 
yet this task has posed significant difficulties for years (De Luca, 
2013; Maietti et al., 2018; Yang et al., 2023). Cultural heritage 
assets, with their complex geometries, material diversity, and 
stylistic variability, present significant challenges for recently 
developed artificial intelligence (AI) solutions for semantic 
segmentation.  
This paper focuses on the emerging opportunities offered by 
multimodal large language models (MLLMs), which leverage 
natural language and zero-shot learning strategies. The proposed 
method uses photogrammetrically derived mesh textures as input 
for the AI-based semantic segmentation process. 
To validate the proposed workflow, the study focuses on the 
Trajan’s Column, an iconic monument in the Imperial Fora of 
Rome, renowned for the helical frieze that encircles and adorns 

its shaft. As highlighted by Hölscher (2004) and Conti and Moffa 
(2022), the frieze of Trajan’s Column functions as a monumental 
semantic system: a complex compositional narrative that projects 
the symbolic power of imperial triumph into stone, combining 
historical accuracy and evocative strength in a form of immersive 
3D storytelling. 
This iconic carved narrative serves as a compelling case study for 
testing the capabilities of the proposed segmentation approach. 
Nevertheless, the intricate compositional layout, stylised figures 
and scenes, monochromatic surfaces, and visible erosion make 
the automated semantic segmentation particularly challenging. 

1.1 Paper’s aim 

The work presents the 3D documentation of the Trajan's Column 
in Rome and its interactive analysis through a multimodal large 
language model (MLLM). The paper will examine the following 
innovative aspects of this work: 
• the complex 3D survey of the Column;
• an automated methodology to unwrap the 3D column and

derive high-resolution orthoimages of the carved frieze;
• a zero-shot referring image segmentation process that uses a

natural language-driven querying interface, requires no
specific retraining, and is capable of interpreting, identifying,
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and segmenting scenes, characters, and anthropic or natural 
elements within the carved narrative; 

• an online 3D viewer for interactive access to the results.
Compared to other works that have coupled AI foundation
models to perform segmentation of low-level heritage classes
(Reby et al., 2023), our approach relies solely on recent MLLM
foundation models to tackle complex semantic segmentation
tasks that require advanced image and text understanding as well
as interpretative capabilities.

2. Related works

The semantic enrichment of 2D and 3D digital heritage data 
fundamentally improves their interpretative potential and 
usability, enabling more nuanced documentation, analytical 
processes and visualisations (Poux et al., 2017; Teruggi et al., 
2021). For years, authors have presented manual and interactive 
frameworks to represent 3D heritage structures based on their 
morphological description and constituent elements (Attene et al., 
2007; Manferdini et al., 2008; Serna et al., 2012; De Luca et al., 
2013). 
The semantic segmentation of 2D images has been a subject of 
research for many years, from the early classical methods based 
on pixel-level features and graph-based algorithms (Boykov and 
Jolly, 2001) to the first deep learning approaches, such as 
AlexNet model, which demonstrated unprecedented performance 
on the largest image dataset of the time, ImageNet (Krizhevsky 
et al., 2012). Then, the introduction of convolutional neural 
networks revolutionised the field, enabling end-to-end 
segmentation without the need for manually designed low-level 
features. Long et al. (2015) introduced Fully Convolutional 
Networks for entire images, preparing the arrival of subsequent 
models such as U-Net (Ronneberger et al., 2015) and Mask R-
CNN (He et al., 2017), which are now fundamental for the 
segmentation of complex images. 
The last decade has seen significant progress in 3D semantic 
segmentation of point clouds. Early efforts employed traditional 
machine learning methods (Weinmann et al., 2015; Grilli et al., 
2019), but researchers have increasingly investigated deep 
learning approaches (Matrone et al., 2020a,b). PointNet and 
PointNet++ (Qi et al., 2017a, 2017b) pioneered this transition, 
and subsequent models, such as PointCNN (Li et al., 2018), 
KPConv (Thomas et al., 2019), Point Transformer (Zhao et al., 
2021) and Super Point Transformer (Robert et al., 2023), have 
further expanded the capabilities of 3D semantic segmentation 
techniques. 
A third option, involving the integration of 2D and 3D 
methodologies, has also seen a great deal of research in the last 
years, with two main types of approaches tested. The first 
employs deep learning techniques on high-resolution images 
obtained from photogrammetric surveys, to then accurately 
reproject inferences onto the corresponding 3D point clouds by 
leveraging known camera orientations (Bassier et al. 2024). The 
second focuses on the direct semantic segmentation of textured 
3D meshes, generating UV maps from the textured 3D model, 
training segmentation algorithms to identify semantic classes 
within the texture space and then mapping back the segmented 
texture onto the 3D meshes (Grilli et al., 2018; Grilli and 
Remondino, 2019). 
The connection between the 2D and 3D world opens up the 
possibility to leverage the most recent advancements in the 
Computer Vision field. Specifically, the employment of recent 
foundation models (i.e. large deep learning models trained on 
massive amounts of data) is used to accomplish a wide variety of 
functions. Nevertheless, the use of foundation models in digital 
heritage remains limited due to the peculiarity of the subject, 
which is often very different from the data used to train these 

foundation models. First attempts were done by Reby et al. 
(2023) combining Segment Anything (SAM) (Kirillov et al., 
2023), Grounding Dino (Liu et al. 2024) and CLIP (Radford et 
al., 2021) to perform low-level characterisation of building 
objects. More recently, the rise of Multi-modal Large Language 
Models (MLLMs) has allowed more complex image scene-
understanding tasks using natural language inputs (Fei et al., 
2024; Yan et al., 2024; Zhang et al., 2024). One of these tasks, 
known as referring image segmentation (RIS), allows a user 
to describe the target object for segmentation through the means 
of descriptive textual inputs (“prompts”). This is a highly 
desirable feature in the cultural heritage field because it leverages 
experts’ core knowledge to generate precise prompts that produce 
meaningful segmentation results. 

3. The Trajan’s Column in Rome

Erected in 113 AD at the centre of Trajan’s forum, the column is 
widely regarded as one of the most sophisticated expressions of 
Roman imperial visual culture and rhetoric (Beard, 2007). 
Commissioned by Emperor Trajan to commemorate the Dacian 
wars (101-102 and 105-106 AD), it stands as a masterpiece of 
ancient engineering and sculptural narrative, serving for 
centuries as a monument of historical memory (Beard, 2007; 
Coarelli, 2000). With an overall height of approximately 44 
meters (including a 6.3 m for the base, 0.8 m for the pedestal, 
26.6 m for the shaft, 1.5 m for the platform, 4.7 m for the capital 
block and a 4.2 m statue on the top), the column is composed of 
17 blocks of Luna marble enclosing a helical staircase lit by small 
slit windows. Its most celebrated feature is the spiralling frieze, 
stretching over 200 meters in length and depicting more than 
2,500 carved figures. The carved narrative sequence reports 
scenes of marches, battles, military councils, rituals and 
construction phases, distinguished by naturalism, iconographic 
richness and refined compositional structure. The visual 
progression is organised along hierarchical and perspectival lines, 
guiding the viewer’s gaze upward along the shaft. To read the 
entire story, a viewer would have to move 23 times around the 
column. Trajan himself appears nearly 60 times in commanding 
positions, embodying the idealised figure of the Roman princeps-
strategist, legislator and guarantor of order. Beyond its 
celebratory function, the column serves as a vital historical 
source, offering insight into Roman military logistics, Dacian 
ethnography, construction techniques, and imperial iconography 
(Lepper and Frere, 1988; Coarelli, 2000; Hölscher, 2004). 
Due to its elaborate formal and narrative structure, as well as its 
complex material characteristics, the Trajan's Column is a 
representative case study for testing advanced digital approaches 
for scene understanding in cultural heritage documentation and 
valorisation. 

4. Methodology

4.1 3D surveying and modelling 

The geometric survey of the column and its surroundings was 
first conducted using a multi-sensor approach, combining 
terrestrial laser scanning (TLS) with photogrammetric 
techniques. The TLS acquisition was performed with a Leica 
P40, acquiring a total of 21 scan positions, which are 
subsequently aligned through iterative closest point (ICP) 
registration. The pairwise registration yielded a RMSE of 6.7 
mm, with a standard deviation of 0.64 mm across the scan pairs, 
indicating internal consistency and stability within the alignment 
network. Given the instrumental specifications of the Leica P40 
- declaring a typical ranging error of 3 mm at 50 meters - the
achieved alignment results are well within the expected precision
range of the device, supporting the reliability of the TLS dataset
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as the primary geometric constraint for the photogrammetric 
process. In fact, given the ongoing underground works of the 
metro line below the archaeological area, TLS is adopted as the 
primary surveying method instead of a traditional network of 
fixed topographic points. TLS acquisition, indeed, provides a 
dense and redundant geometric dataset, enabling the selection a 
posteriori of architectural features for the photogrammetric 
alignment and control. The final TLS point cloud has 
approximately 307 mil. points with an average sampling distance 
of 2 mm (Figure 2). 

Figure 2. TLS point cloud of the surveyed area (ca 50x50m). 

The photogrammetric survey was performed with both terrestrial 
and drone images (Table 1), acquired ca 2-3 weeks after the TLS. 

Camera Resol. Focal # 
img 

Min/Max 
GSD (*) 

ground Sony Alpha 7 
IV 

33 Mpx 24-105
mm

801 1-3 mm

drone DJI Mavic 
3M 

20 Mpx 24 mm 1485 0.75-2 
mm 

Table 1. Specifications of the terrestrial and aerial 
photogrammetric data (* on the Column). 

The photogrammetric adjustment integrated both image sets 
(Figure 3, Table 2), with image orientation and scaling 
constrained through a set of homologous points identified 
between the TLS point cloud and the photogrammetric images. 

RMSE on Check Points 8.6 mm 
Avg redundancy 9.17 
Mean reprojection error 1.19 px 
Avg. observation per image 6350 

Table 2. Bundle adjustment metrics. 

The dense image matching process on the Column generated a 
coloured dense point cloud of approximately 117 million points, 
providing additional radiometric detail complementary to the 
TLS geometry. As the used checkpoints (13) revealed a quite 
high RMSE within the bundle adjustment, the photogrammetric 
and TLS point clouds are further aligned using an ICP approach. 
The cloud-to-cloud distance between the two datasets resulted in 
a mean distance of 5mm (Figure 4c), which is considered a 
satisfactory metric given the size of the Column. 

a)

b) 

c) 

d) 

e) 

f)

Figure 4. Textured photogrammetric 3D model (a) with close-
up views on the carved frieze and tale (b, c, d, e) with and 
without texture. Cloud-to-cloud comparison of the TLS and 
photogrammetric surveys (f). 

A high-resolution mesh model is then derived from the dense 
point cloud, containing around 20 million faces. This model is 
textured with 12 high-resolution texture maps (8192x8192 
pixels), featuring a resolution of 1 mm/pix and enabling detailed 
visual analysis of the monument’s sculptural elements (Figure 4). 

a)  b)  c) 
Figure 3. Different views of the recovered camera poses and sparse point cloud of the Column and its surrounding. 
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4.2 3D model simplification 

In addition to the comprehensive 3D documentation of the 
Column, the development of an AI-assisted tool for the 
interpretation of the carved frieze required a structured approach 
to data preparation. Two key processing stages are identified as 
essential to achieve this objective: (i) the discretisation of the 
frieze into a continuous, ribbon-like structure, guided by the 
visual segmentation naturally suggested by the cornice that 
separates the sculptural registers; (ii) the optimisation of the 
model’s geometric and textural components to enable efficient 
AI-based querying, analysis, and visualization. 
The high-resolution textured 3D model is processed to generate 
a simplified mesh representation of the column shaft. This is 
achieved through the subdivision of the model into smaller, 
logically organised segments via parametric scripting 
(Rhinoceros3D + Grasshopper), producing both a cylindrical 
(wrapped) configuration and a corresponding planar 
(unwrapped) version. Simplified geometries are essential to 
reduce computational complexity, while smaller mesh segments 
facilitate the handling of high-resolution textures during both 
generation and AI-based processing. 
A crucial step in this workflow is the extraction of a guiding 
polyline along the neutral axis of the cornice, which served as a 
geometric reference for segmentation. This polyline is derived 
through a surface analysis based on local covariance features - 
linearity, planarity, surface variation, and omnivariance -
ensuring precise alignment with the central trajectory of the 
sculptural frieze (Figure 5). 

Linearity Surf. 
variation 

Planarity Omnivariance 

Figure 5. Covariance features at various radii (top) used to 
extract the polyline (bottom) delimiting the tale along the 
Column. 

As a first step, an approximate cylindrical surface is generated by 
lofting a series of circular sections with varying diameters, 
spaced at regular 1-meter intervals along the shaft. This surface 
provides a geometric reference for the frieze's development. Then, 
a helical curve with a constant pitch is created following the 
frieze’s central path. Both the central path curve and the cornice 
polyline are segmented into 26 polylines using a vertical plane 
aligned with the column’s longitudinal axis (Figure 6a). 
Within each of the 26 segments, a group of three reference 
polylines is defined to guide the surface generation: the central 
helical one, representing the main path of the frieze, and two 

additional polylines, derived from the cornice, marking the lower 
and upper edges of the sculptural register. This polyline triplet is 
essential to accurately capture both the unfolding trajectory of the 
relief and its vertical extent, providing a stable geometric 
framework for mesh simplification.  
A lofting operation is indeed performed between the curves of 
each group, resulting in the 26 meshes that comprise the 
simplified wrapped model of the shaft. The use of these three 
curves allowed the creation of ribbon-like mesh segments that 
maintain topological consistency across the model, ensuring 
seamless alignment between adjacent areas as neighbouring 
meshes share common borders. 
This structure also enabled the generation of both a wrapped 
(cylindrical) and an unwrapped (planar) version of the model, 
supporting flexible applications in visualisation, texture mapping, 
and AI-driven analysis. 
To preserve dimensional coherence between the two 
configurations, the central helical polyline served as the primary 
reference during the unwrapping process. Its segments are 
reoriented onto a vertical plane, maintaining their original lengths, 
while the lower and upper polylines are adjusted accordingly to 
fit the transformed layout. This approach ensured that the 
simplified mesh retained the proportions and spatial logic of the 
original column, despite its geometric complexity. 

a) b)

Figure 6. The cylinder split into 26 ribbons (a). Subdivision of 
textures into multiple overlapping tiles for semantic 
segmentation (b). 

4.3 UV mapping, texturing and surface remeshing 

Using the 26 ribbons created as described above, an automated 
pipeline is developed within SideFX Houdini to extract both 
chromatic and geometric information from the photogrammetric 
textured mesh and allows for their reprojection onto the 
simplified (wrapped and unwrapped) mesh counterparts with the 
goal of reconstructing the monument’s original details. 
The process began with the computation of UV coordinates on 
the simplified wrapped ribbons. Using these coordinates and 
taking the photogrammetric textured mesh as input, texture maps 
are generated through baking operations. These included diffuse, 
ambient occlusion, curvature, and normal maps. 
The UV coordinates derived from the wrapped configuration are 
then transferred to the unwrapped segments, ensuring a 
consistent spatial correspondence between the two versions of the 
shaft. This transfer is made possible by the similar topological 
base structure shared by both configurations, as established 
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through their generation process outlined in Section 4.2. 
Subsequently, each wrapped segment undergoes a remeshing 
phase aimed at achieving a denser and more uniform distribution 
of vertices, thereby enhancing the mesh’s potential for local 
detail representation. For each newly generated vertex, the 
distance from the original surface is calculated and stored as a 
geometric attribute. Then the spatial data is transferred from the 
wrapped to the unwrapped geometry by leveraging the shared 
UV layout. The depth of the meshes is then reconstructed, 
preserving the original geometric features. 
In preparation for the AI-based segmentation described in 
Section 4.4, the images are further processed to aid the model in 
its task by increasing the visibility of contours and critical details. 
As the column is made of a single material and presents limited 
radiometric information, the diffuse map is blended with the 
curvature map to combine the subtle detail cues highlighted by 
the shadows in the diffuse map with the geometric features of the 
frieze, such as edges and creases, emphasised by the curvature 
map. Since the variation of the curvature is more significant than 
the absolute depth alone for identifying the contours, the use of 
the depth map was not considered necessary. 
The hybrid images are then subdivided into 1152 tiles of 640×640 
pixels (Figure 6b) to feed to the MLLM model. This specific tile 
size is deemed optimal in our specific case because it offers a 
good balance between image detail and manageable data size, but 
working with higher resolution images may produce different 
results. Each tile has an 80% overlap with the adjacent ones to 
reach a good contextual understanding of the scene and to avoid 
excessive straight cuts. Since the original hybrid images have 
variable dimensions due to the shape of the frieze, particularly in 
length, the number of tiles generated per image differs 
accordingly. Some images produce only fifteen tiles, while others, 
being longer, require fifty or more to ensure full coverage. 
Because tiles overlap by 80%, each pixel is predicted five times 
in the final image; a threshold-based vote is then applied to select 
the final pixel value and generate the final masked images. 

4.4 AI semantic segmentation 

Among the methods able to perform referring image 
segmentation (RIS), Sa2VA (Yuan et al., 2025) is employed: 
Sa2VA is a multi‑modal large language model able to segment a 
specific object in an image or video based on an input linguistic 
query (“prompt”). Sa2VA combines SAM‑2 (Ravi et al., 2024), 
a foundational video segmentation engine, with LLaVA (Li et al., 
2024), a state‑of‑the‑art vision language model. In our pipeline, 
we handcrafted “instruction tokens” to generate segmentation 
masks for the interpretation of the Column. According to the 
carved narrative explored above, five distinct semantic classes 
are identified on the frieze: people, Emperor Trajan, battle 
scenes, Roman military standards, and vegetation. Each of these 
target classes is chosen because it requires high levels of scene 
understanding, and each prompt is designed to describe the main 
characteristics of each class. While the classes people, Roman 
military standards, and vegetation are mainly discernible by their 
geometric and physical characteristics, the segmentation of battle 
sequences and Emperor Trajan is based on the interpretation of 
dynamic cues, such as gestures and group interactions, not just 
physical appearance, and allow us to test the MLLM model 
capabilities to successfully process highly interpretational 
queries. Classes requiring very specific domain knowledge, but 
of potential heritage interest nonetheless, are excluded from the 
current study because the model lacks specific heritage-based 
training. 
After the prompt designing phase, the generated 1152 image tiles 
are queried to perform the inference of the target classes. For 
every tile, a query per class is performed, and the results are 

validated by a human operator to remove erroneous segmentation. 
The segmented images are then reassembled into the original 26 
ribbons for being visualised on the wrapped and unwrapped 
meshes of the 3D model. 

5. Segmentation and visualisation results

5.1 Quantitative analysis 

A subset of the predicted images (6) is used for deriving some 
metrics to evaluate the performance of the MLLM-based 
segmentation method. For each target object, the prediction is 
compared with a corresponding mask annotated by an expert user. 
To evaluate the outcome of the segmentation pipeline, common 
Machine Learning metrics are used: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐼𝑜𝑈 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛

where, for each considered class, Tp (true positive), 𝑇𝑛	 (true 
negative), Fp (false positive), and Fn (false negative) come from 
the computed Confusion Matrix. All metrics, reported in Table 3, 
are the averages of the metrics calculated for each class on each 
image. 
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Precision 79.09 89.66 45.26 79.28 92.13 
Recall 87.71 87.33 47.71 80.70 58.19 

F1 Score 82.07 88.44 46.34 79.84 63.02 
IoU 69.78 83.39 43.41 77.07 53.22 

Table 3. Per-class metrics for the MLLM-based segmentations 
(visual in Figure 7). 

5.2 Qualitative analysis 

The segmentation results across all five classes (people, Emperor 
Trajan, battle scenes, Roman military standards, and vegetation), 
while occasionally incomplete, often provided meaningful 
semantic insights, especially considering the complexity of the 
scenes (Figure 7). 
The prediction of the class people is generally correct, especially 
in scenes with clearly defined human figures. Despite some 
inconsistencies, such as the inclusion of shields in some instances 
and their exclusion in others, Roman soldiers are correctly 
identified and segmented. This suggests that more precise prompt 
phrasing, particularly concerning the description of weapons, 
could yield more consistent results. Inconsistencies due to partial 
or over-segmentation can also be seen in other instances, 
probably due to occlusion problems (human figures hidden by 
other objects in the scene) or lack of crisp contours, determined 
by the damaged eroded surface of the frieze in that area. Finally, 
over-segmentation of human figures by including nearby animals. 
For the Emperor Trajan class, the segmentation proved to be 
particularly challenging. The Emperor's depiction in the frieze is 
not consistently clear, often blending with other figures, making 
it difficult to distinguish even for the expert human eye. The 
MLLM had to identify Trajan as a subcategory within the broader 
people class. Despite a detailed prompt (“short and cropped hair, 
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no beard, no helmet, no laminar armour, wearing a long, pleated 
tunic that reaches his knees and a cloak draped over his shoulders 
and across one of his arms...”), some partial and incorrect 
classifications or clear misidentifications in more ambiguous 
contexts are present. 
The battle scenes class yielded the highest number of 
segmentation errors. Given the stylised and dynamic nature of 
combat illustrations, character postures and contextual elements 
often led to confusion. Missing or false positive detections are 
present in the results, e.g. in scenes depicting troops in motion 
but without explicit combat cues. 

The Roman military standards category features small 
dimensions of the emblems, morphological resemblance to other 
vertical elements (such as limbs or branches) and occasional 
surface erosion. Nonetheless, the segmentation results are 
generally satisfactory, despite errors due to partial occlusions, 
erosions or crowded areas.  
The vegetation class, though stylised and often depicted in the 
background, is segmented with generally positive results. Trees 
and branches are correctly identified in many instances, though 
partial or incorrect segmentations are also observed. 

correct segmentation (a) partial / missing segmentation (b) over- / wrong-segmentation (c) 
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Figure 7. Visual results of the MLLM-based segmentation of the frieze’s texture for the selected classes. Metrics in Table 3. 
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Figure 8. Interactive online viewer displaying the wrapped 
(top) and unwrapped (bottom) 3D model of Trajan’s Column 
with segmentation results for the people class. 

6. Conclusions

This study shows that semantic segmentation of complex 3D 
heritage models, guided by natural language and enabled by 
multimodal large language models (MLLMs) in a zero-shot 
configuration, is technically feasible and produces meaningful 
results without domain-specific training or manual annotations. 
Despite promising outcomes, some limitations persist due to the 
domain representation gap in existing foundation models and the 
iconographic complexity of the heritage case study” 
• Limited domain representation: cultural heritage, especially

ancient sculpture, is poorly covered in most training datasets,
making it challenging for models to process textures that are
monochromatic, stylised, or eroded - very different from
typical modern training images.

• Iconographic complexity: figures are often occluded,
overlapping, ruined by the time or shown in non-standard
perspectives, which complicates automatic recognition.
Semantic boundaries can appear fragmented or ambiguous,
with errors even in non-eroded and clearly legible areas.

• Fragmented context: the frieze’s length required generating
more than 1000 texture tiles. Even with overlapping tiles and a
voting mechanism, the system analyses only partial scenes at a
time, limiting its ability to recognise relationships between
adjacent figures. This affects semantic coherence but the
workflow still performs robustly under these constraints.

Nevertheless, achieved results point to clear opportunities for 
further refinement, which would require extending beyond a pure 
zero-shot approach. Introducing a small set of manually 
segmented examples could indeed adapt the model to the unique 
visual and semantic features of ancient friezes, improving its 
sensitivity to carved contours, symbolic motifs, and stylistic 
conventions. Moreover, adding structured historical or 
iconographic information - such as figure roles, attributes, or 
scene hierarchies - would support clearer semantic 
disambiguation and more consistent labelling across complex 
scenes. 
In conclusion, the complete workflow - from 3D data acquisition 
to automated texture generation and zero-shot AI-based 
segmentation - demonstrates a scalable and adaptable pipeline for 
digital heritage documentation and analysis. By further refining 
the AI methods integrating domain-specific training and 
contextual data, the reported workflow can be replicated and 
reused across a broad range of decorated 3D artefacts: spiral 
columns, sarcophagi, temple reliefs, narrative friezes, or any 
context where figurative content is distributed on curved or 
morphologically complex surfaces. To maximise accessibility 
and scholarly reuse, the segmentation results are also being 
deployed through an interactive web-based 3D viewer (Figure 8) 
developed with Three.js, supporting detailed exploration, 
annotation, and cross-disciplinary collaboration. 
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