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Abstract 

The accurate detection and assessment of wood surface defects in historic timber structures, particularly knots, is essential for effective 

conservation and strengthening planning. However, the application of automated visual grading methods to aged timber remains 

underexplored due to the irregular texture, weathering and lack of relevant datasets. In this study, we propose an end-to-end deep 

learning-based pipeline that integrates wood surface segmentation, perspective correction, and knot detection to estimate structural 

grading factors. A dedicated raw data collection of over 10,000 high-resolution images of historic timber surfaces was compiled using 

both DSLR cameras and mobile devices, resulting in multiple datasets with approximately 3,000 annotated samples. Three model 

families, YOLO, Detectron2 and DeepLabV3, were evaluated under different experimental setups. Beyond model benchmarking, we 

further compared the AI-derived results with expert manual measurements. The model for segmentation of timber surface achieved a 

mean IoU of over 0.85 and the model for detection of historical wood knots reached F1 scores of up to 0.9. The structural assessment 

factors estimated by the AI pipeline achieved a Pearson correlation coefficient of 0.641 compared to manual measurements, indicating 

a moderate level of consistency in knot factor estimation. This research highlights the potential of vision-based AI systems in supporting 

structural diagnosis and conservation of heritage timber elements. 

1. Introduction

1.1 Research background 

Over time, various environmental and mechanical factors affect 

the stability and integrity of historic timber structures. Despite 

their cultural and architectural significance, these structures are 

often undervalued due to the lack of accurate assessments of their 

mechanical strength and structural parameters. Traditional 

inspection methods, which rely on manual measurements, are 

time-consuming, prone to human error, and often inadequate for 

challenging conditions, such as poor lighting or inaccessible 

areas.  

A detailed evaluation of existing timber structures offers the 

potential to identify and utilise previously unrecognised 

structural reserves. This, in turn, enables a more precise planning 

of reinforcement measures during refurbishment projects and 

may lead to a reduction in the extent of required interventions. 

For installed timber, strength grading can be performed based on 

visually detectable characteristics, in accordance with the 

German standard DIN 4074-1 and DIN EN 14081-1. Among the 

listed criteria, knots are particularly crucial for determining the 

strength (Görlacher, 1999). Recent research (Zhang, 2024) 

investigates the effect of knots on the mechanical properties of 

Chinese fir using a three-point bending test and X-ray computed 

tomography, revealing that knot size and position significantly 

influence strain distribution and mechanical behaviour. 

In practice, the visual grading of in-situ timber beams is rarely 

applied, primarily for two reasons. Firstly, the structural engineer 

responsible requires extensive additional knowledge of timber as 

a material. Secondly, the documentation of the grading process is 

time-consuming and lacks clearly defined regulatory standards. 

Figure 1, taken from DIN 4074-1, illustrates the method by which 

knot characteristics in squared timber sections are evaluated. The 

knot factor A represents the largest ratio between the shortest 

diameter of a visible knot and the cross-sectional dimensions 

(width or height) of the timber, based on measurements from all 

four sides, which can be calculated using the following equation: 

𝐴 = 𝑚𝑎𝑥. (
𝑑1

𝑏
;
𝑑2

ℎ
;
𝑑3

𝑏
;
𝑑4

ℎ
) 

where d1, d2, d3, d4 denote the shortest measured diameters of the 

visible knots, while b stands for the width and h for the height of 

the timber. 

1.2 Relevance and Related Works 

Automatic detection of wood surface characteristics has been a 

well-established research topic, particularly in the context of new 

wood production and quality control. Over the past decades, 

stationary optical measurement systems have been widely 

employed in industrial settings to monitor lumber surfaces for 

visible defects and structural irregularities. These systems aim to 

ensure consistent product quality by identifying surface 

anomalies early in the production line. 

Figure 1. The determination of the largest single branch by

the dimension of knot (DIN, 2003). 
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Extensive research has been dedicated to both general surface 

anomaly recognition (Louban, 2009; Syla et al., 2023) and the 

identification of specific features, such as wood knots (Ding et 

al., 2020; Yang et al., 2021; Chizhova et al., 2024), tree rings 

(Divya & Kaur, 2020), and surface cracks (Liu et al., 2020). 

However, these studies predominantly focus on newly processed 

timber under controlled imaging and lighting conditions. 

In recent years, the application of machine learning and deep 

learning techniques has significantly advanced the field. For 

instance, He (2019) proposed a fully convolutional neural 

network (FCN) tailored to classify wood defects, effectively 

distinguishing between live knots, dead knots, and cracks using 

a customized dataset. Similarly, Fang et al. (2021) adopted the 

YOLOv5 architecture for real-time detection of surface knots in 

sawn timber, demonstrating the potential for integration into 

industrial automation pipelines. 

1.3 Research Objectives and Contributions 

Despite significant advances in automated wood surface analysis, 

there remains a critical gap in developing AI-based methods 

capable of reliably detecting wood knots and supporting 

structural assessment for historic timber structures under real-

world conditions.  

This study addresses this gap by constructing a dedicated data 

collection and developing a complete AI-based pipeline for the 

detection and assessment of wood knots in historic timber 

elements. The main contributions of this work are:  

• The creation of large-scale, annotated datasets of historic

timber surfaces and wood knots under diverse acquisition

conditions.

• The integration of deep learning models into an end-to-end

pipeline for automated knot detection and structural factor

estimation, validated against expert measurements.

Through these contributions, we aim to demonstrate the potential 

of AI-assisted approaches in enhancing the structural evaluation 

and conservation of heritage timber structures. 

2. Datasets Collection

2.1 Data Acquisition 

Historic timber structures exhibit distinct visual and material 

characteristics such as surface weathering, discolouration, 

biological degradation and irregular geometry. These 

characteristics differ significantly from freshly processed or 

minimally aged timber, which is the focus of most existing 

datasets. Such datasets are inadequate for developing models 

tailored to the needs of heritage conservation, where accurate 

identification of wood knots and surface features is required 

under variable and often non-ideal conditions. The visual 

complexity of heritage timber requires specialised datasets that 

reflect natural wear, inconsistent textures and variations due to 

lighting. Existing datasets, such as the large-scale wood defect 

dataset by Kodytek et al. (2021), have been extensively used for 

automated vision-based quality control in timber production. 

However, our preliminary experiments on wood knot detection 

using yolov8m (Jocher et al., 2023) demonstrated that this dataset 

is not optimal for historical wood surfaces due to the differences 

between knots in fresh wood and those in aged timber. 

To meet the specific needs of this study, we developed a custom 

image database of approximately 10,000 high-resolution images. 

These captures were systematically differentiated according to 

the following parameters 

• Acquisition conditions: Images were captured under both

controlled laboratory conditions and real-world

environments, including low-light conditions, occlusions

and limited accessibility typically found in historic

buildings.

• Feature resolution: The database includes close-up images

capturing fine structural features (e.g. knots, cracks) as well

as wide-angle images of entire wooden beams to allow 

multi-scale analysis.

• Imaging technology: High-resolution RGB images through

Nikon D6400, Nikon D850, Sony A7R IV; images through 

mobile devices (iPhone 13 Pro Max and iPhone 14 Pro)

equipped with the 3DScanner app.

• Object positioning in architectural context: The database

further distinguishes between accessible and embedded

structural elements, considering variations in visibility and

recording feasibility.

2.2 Preprocessing and Annotation 

Following image acquisition, a multi-step preprocessing and 

annotation workflow was applied to ensure data quality and 

suitability for downstream AI training. As a first step, all 

collected images were reviewed for exposure-related artifacts: 

overexposed and underexposed images were automatically 

filtered using histogram-based thresholds. After this initial 

filtering, each image was manually inspected to ensure visual 

clarity, completeness of content, and the absence of capture 

errors such as motion blur or defocus. This ensured that only 

high-quality and representative samples were included in the 

whole data collection.  

Table 1. Summary of established fundamental datasets. 

Dataset 
Image 

amount 

Resampled 

resolution 
Task Capture tool Captured objects 

Det-sf-v1 635 640 × 640 Detection Nikon D850 
dismantled timber elements and the old roof of a 

historic wooden house 

Det-dominik-v1 606 640 × 640 Detection 
Nikon D6400 

& Sony V7R IV 

roof structure of an outbuilding  

at the Dominican church in Bamberg 

Det-dominik-v2 290 640 × 640 Detection Nikon D6400 
close-up images of knot features in the tower loft 

of the Dominican church in Bamberg 

Det-dominik-v3 316 640 × 640 Detection iPhone 14 pro 
Roof structure in the tower loft  

of the Dominican church in Bamberg 

Det-dominik-v4 246 640 × 640 Detection 
Nikon D6400 

& iPhone 14 pro 
Main roof structure of the Dominican church 

Det-mario-v1 307 640 × 640 Detection iPhone 14 pro Roof structure of the Marionette theatre 

Seg-dominik-v1 584 1024 × 1024 Segmentation 
iPhone 13 pro 

max 

Roof structure in the tower loft  

of the Dominican church in Bamberg 
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In the annotation phase, images were uploaded to the Roboflow 

platform and labelled according to task-specific requirements. 

For segmentation, polygon-based masks were created to 

distinguish main beams and side beams, allowing for structural 

separation in later processing. For detection, bounding boxes 

were applied to wood knots as the primary class. Although wood 

dowels, visually similar to knots, were also annotated during the 

process, all detection datasets used in this study were filtered to 

include only wood knots to ensure consistent evaluation of knot-

specific model performance. 

This task-specific annotation strategy ensures that the training 

data reflect real-world complexity while maintaining a controlled 

framework for evaluating segmentation and detection model 

performance. The final established fundamental datasets are 

summarized in Table 1 and several samples are illustrated in 

Figure 2. 

3. Methodology

3.1 Workflow overview 

The proposed workflow employs state-of-the-art deep learning 

architectures for timber surface segmentation and knot detection. 

The models are trained on the custom datasets under various 

experimental setups. The complete workflow comprises three 

main stages, as illustrated in Figure 3: 

Stage 1 Timber Surface Segmentation: 

The first stage involves instance segmentation to extract the 

target timber surface from the background structure. Several 

models like Detectron2 (Wu, 2019) and models from YOLO 

family are trained on the Seg-dominik-v1 dataset to perform this 

segmentation task. The selection criteria for the optimal model 

include segmentation accuracy, model size and inference speed, 

depending on the relevant practical acquisition in the future. The 

segmentation results are exported in both mask coordinate and 

PNG format. 

Stage 2 Perspective adjustment: 

Once the timber surface has been segmented, the largest instance 

by area is selected for perspective correction. This assumption is 

based on the observation that, under standard imaging conditions, 

the main surface occupies the largest contiguous area in the 

image. The extracted segmentation mask undergoes Douglas-

Peucker (DP) simplification to reduce unnecessary complexity 

while preserving essential shape features. A perspective 

transformation matrix is then computed and applied to correct 

perspective distortions present in the original image. This step 

ensures that the output image is standardized and rectified, 

providing an optimal input for the subsequent wood knot 

detection. Correction of optical lens distortion is not taken into 

account in the current workflow, but will be considered in future 

implementations, particularly for on-device applications on 

mobile or edge platforms. 

Stage 3 Wood Knot Detection: 

In this stage, the perspective-corrected image is processed using 

a pre-trained detection model, which identifies all visible wood 

knots on the target timber surface. Currently, models from the 

YOLO family are employed due to their balanced detection 

efficiency and accuracy. In preliminary tests, several post-

processing methods, such as k-Nearest Neighbours (kNN) 

feature validation, Non-Maximum Suppression (NMS), and 

Otsu’s thresholding, were evaluated to improve result 

consistency and bounding box refinement. Although these 

Figure 3.  Visual illustration of an example processed through the proposed AI-assisted pipeline. 

Timber surface 

segmentation through 

Stage 1 

The input image 

captured by iPhone 

Perspective adjustment 

based on simplified 

segmented polygon 

through Stage 2 

Wood knot detection 

through Stage 3 

Factor calculation through 

shorter side of bounding 

box b and timber width W 

in pixel. For this example, 

Factor A = 0.3414 

Det-sf-v1 

Det-dominik-v1 

Det-dominik-v2 

Det-dominik-v3 

Det-dominik-v4 

Det-mario-v1 

Seg-dominik-v1 

Figure 2.  Samples from each fundamental dataset. 
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methods have not yet been fully integrated into the final pipeline, 

they showed promising effects and are planned to be incorporated 

and systematically evaluated in future versions of the workflow. 

Stage 4 Factor Estimation: 

In the final stage, the adjusted timber surface polygon obtained 

from Stage 2 is combined with the bounding box of each detected 

knot from Stage 3. For each knot, the shortest side of its bounding 

box is measured and compared to the corresponding dimension 

(width or height) of the timber surface polygon. After evaluating 

all knots on a single timber element, the maximum of these 

individual ratios is taken as the final value of factor A, as defined 

above. This value characterizes the most critical knot influencing 

the grading of the timber element, as illustrated in Figure 1. 

Currently, only axis-aligned bounding boxes are supported, but 

future work will incorporate rotated bounding box adaptation for 

more accurate representation of angled knots. 

With the adjusted timber surface mask and the refined bounding 

boxes of detected wood knots through the above three stages, the 

relative distance between each detected wood knot and the 

segmented timber boundary can be computed. This geometric 

relationship provides crucial insights into the structural integrity 

of the historic timber. 

3.2 Model selections 

To explore the architectural suitability of different deep learning 

models for timber surface segmentation and wood knot detection, 

we selected three representative model families: YOLO, 

Detectron2 and DeepLabV3 (Chen et al., 2018). These models 

were integrated into the workflow with distinct roles based on 

their design principles, task adaptability, and practical 

applicability.  

The YOLO (You Only Look Once) models, known for their one-

stage architecture and high inference speed, were employed for 

both segmentation and detection tasks. The model series from 

YOLOv8 to YOLOv11 in YOLO family offers progressive 

improvements. YOLOv8 features a streamlined structure with 

decoupled heads and integrated segmentation branches, while 

YOLOv9 builds upon this by introducing Generalized ELAN 

(GELAN) and weight standardization, enhancing feature fusion 

and model convergence. YOLOv10 further advances the 

architecture with anchor-free detection, re-parameterization 

techniques, and conditional convolution layers. The latest 

iteration, YOLOv11, enhances backbone efficiency, reduces 

parameters by 22% compared with YOLOv8, and expands task 

support on Oriented Object Detection (OBB). Its optimized 

architecture balances accuracy and speed for edge deployment. 

Despite these advancements, the core concept of YOLO 

detection remains consistent: the input image is divided into a 

grid, and each grid cell predicts bounding boxes and class 

probabilities. These predictions are then refined into final 

detections using confidence scores and non-maximum 

suppression. This process is visualized in Figure 4, which 

illustrates the flow from grid partitioning to final object 

localization. 

In contrast, Detectron2 was employed exclusively for 

segmentation, offering a region-based instance segmentation 

pipeline built on the Mask R-CNN framework. Two model 

variants were selected: one using a ResNet-50 backbone with 

Feature Pyramid Networks (FPN) for a balance between accuracy 

and efficiency, and another with a deeper ResNet-101 backbone 

to support more detailed feature extraction and precise mask 

boundaries, albeit with greater computational cost. These models 

represent classical two-stage segmentation architectures, which 

are particularly effective in tasks requiring high spatial precision 

and the separation of multiple object instances. 

As a semantic segmentation baseline, DeepLabV3 was included 

to evaluate the performance of encoder–decoder-based models. 

Three backbone configurations were tested: ResNet-50 for 

moderate accuracy with acceptable computational load, ResNet-

101 for improved semantic depth at higher cost, and 

MobileNetV3-Large as a lightweight alternative more suited for 

edge deployment. These models were used to explore how well 

semantic segmentation performs in delineating timber surfaces 

under varying visual and environmental conditions. 

4. Experiments

4.1 Experiment Settings 

Based on the established datasets of historical wood structures 

for segmentation and detection tasks, and the overall pipeline 

designed for estimating wood knots on historical timber surfaces, 

the experiments aim to provide robust validation across various 

datasets and model architectures. The goal is to verify both the 

quality of the constructed datasets and the applicability of 

multiple state-of-the-art deep learning models. 

Dataset 
Data split 

train/val/test 

Data 

Augmentation 

on train set 

Abbrevi-

ation 

Det-sf-v1 445/95/95 1321 s1 

Det-dominik-v1 426/90/90 1265 d1 

Det-dominik-v2 204/43/43 607 d2 

Det-dominik-v3 222/47/47 660 d3 

Det-dominik-v4 174/36/36 517 d4 

Det-mario-v1 215/46/46 640 m1 

Seg-dominik-v1 408/88/88 1224 - 

For clarity, we use short codes to refer to the datasets throughout 

the paper. Table 2 summarizes their full names, data splits, and 

the corresponding abbreviations used. For example, d1 refers to 

Det-dominik-v1, and m1 to Det-mario-v1. Combined datasets are 

referenced by merging abbreviations (e.g., Det-d2d4m1 

indicates a training set composed of Det-dominik-v2, v4, and 

Det-mario-v1). While dataset splitting was performed carefully, 

it remains possible that the same beam or knot appears in more 

than one subset if it was captured from different angles or under 

varying conditions during the data collection process. 

In the Seg-dominik-v1 dataset for segmentation task, the training 

set was augmented using random hue and brightness shifts, with 

Figure 4. Grid-based object detection principle in YOLO, 

Redmon et al. (2016). 

Table 2.  Data split and augmentation for segmentation and 

detection experiments. 
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additional Gaussian noise applied to up to 2% of the pixels in 

each sample.  

For all training sets for detection task, augmentations included a 

combination of random changes in luminance, Gaussian blur, and 

additive noise, applied individually to each image. These 

procedures were implemented to increase the diversity of training 

samples and simulate realistic variation in visual conditions. 

4.2 Segmentation models 

According to the general pipeline introduced in Section 3.1, the 

main objective of the segmentation stage is to extract the primary 

structural regions of historical timber surfaces from their 

background and surrounding noise.  

In the segmentation experiments, we selected models from three 

major architectures as mentioned: the YOLO family as 

representative single-stage models, Detectron2 for testing mask-

based approaches, and the DeepLabV3 series for classical 

encoder–decoder segmentation. Based on our preliminary 

experiments results on segmentation models on dataset Seg-

dominik-v1, all models in this stage were trained on the Seg-

dominik-v1 dataset for 150 epochs under identical conditions and 

subsequently evaluated on the corresponding test set. The 

performance results on test set in terms of Mean IoU, Mean Dice, 

and inference time are summarized in Table 3. 

Model 
Mean 

IoU 

Mean 

Dice 

Inf. 

Time 

(ms) 

yolov8m-seg 0.847 0.893 6.98 

yolov9c-seg 0.859 0.906 10.49 

yolo11n-seg 0.859 0.911 2.94 

yolo11m-seg 0.859 0.909 7.25 

yolo11l-seg 0.855 0.908 11.03 

mask_rcnn_R_50_FPN_3x 0.789 0.842 131.29 

mask_rcnn_R_101_FPN_3x 0.778 0.829 143.79 

deeplabv3_resnet50 0.428 0.511 68.67 

deeplabv3_resnet101 0.400 0.486 103.45 

deeplabv3_mobilenet_v3_large 0.428 0.512 28.81 

The Mean IoU (Intersection of Union) and Mean Dice are used 

as the primary evaluation metrics to assess segmentation quality. 

The mean IoU can further be calculated based on the IoU 

between the i-th ground truth mask and its corresponding 

prediction in class c, where C represents the number of non-

background classes (i.e., main beam and side beam in Seg-

dominik-v1), 𝑁𝑐  is the number of matched ground truth–

prediction mask pairs in class c: 

𝑚𝑒𝑎𝑛 𝐼𝑜𝑈 =  
1

𝐶
∑(

1

𝑁𝑐
∑ 𝐼𝑜𝑈𝑐,𝑖

𝑁𝑐

𝑖=1

)

𝐶

𝑐=1

 

To fairly assess per-class performance, the mean Dice is 

computed as the average of Dice scores across all categories 

according to IoU. The Dice score reflects the spatial overlap 

between the predicted region and the ground truth and is 

particularly useful for evaluating segmentation performance on 

imbalanced datasets, as it gives more weight to correctly 

predicted regions than to the background. 

Overall, YOLO-based segmentation models achieved the best 

performance on the Seg-dominik-v1 test set, with models like 

yolov9c-seg, yolo11n-seg, and yolo11m-seg combining high 

accuracy with inference times under 11 ms. Their superior 

performance likely stems from architectural suitability and better 

adaptation to small, domain-specific datasets. In contrast, 

DeepLabV3 models with heavier backbones (e.g., ResNet-101) 

typically require larger and more diverse data to generalize 

effectively, making them prone to underfitting or overfitting in 

this context. Given the identical training settings, the observed 

performance gap is primarily attributed to differences in model 

architecture rather than training configuration. 

4.3 Detection models 

4.3.1 Multi models training on fundamental datasets 

In the first experiments step the chosen models mentioned in 

Section 3.2 from YOLO family for detection task were trained 

individually on the established fundamental datasets containing 

single class wood knots as shown in Table 2. All the models were 

trained with the identical hyperparameter setup with 150 epochs 

and Adam optimizer. To evaluate the performance of trained 

models there are mainly five metrics to evaluate:  

• mAP50 is the most commonly used performance metric,

indicating the mean Average Precision (AP) at an IoU

threshold of 0.5, measuring how well predicted boxes align

with ground truth.

• mAP50-95 extends mAP50 by averaging AP across IoU 

thresholds from 0.5 to 0.95 in steps of 0.05, which provides

a more comprehensive assessment of localization quality.

• Precision is used to reflect the model's ability to avoid false

positive samples, while Recall indicates how well it detects

all true objects.

• The F1-score, as the harmonic mean of mean precision and

mean recall, provides a balanced metric that summarises

overall recognition accuracy. It can be calculated as

following:

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The detailed values are likewise represented in the form of a heat 

map e.g. Figure 5 for F1-score. The results demonstrates that the 

datasets d1 (Det-dominik-v1), d2 (Det-dominik-v2), d4 (Det-

dominik-v4), and m1 (Det-mario-v1) generally lead to higher F1-

scores across most YOLO models, indicating that these datasets 

Table 3. Evaluation results of segmentation models 

on test set from Seg-dominik-v1.  

Figure 5. F1-score heatmap from from validation results: 
Each cell shows the F1-score of a particular model Y (rows) 

trained and validated on the dataset X (columns). These 
scores were recorded during training and reflect model 

performance on their respective validation sets. 
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offer more consistent training conditions or contain more 

representative features for model learning. Conversely, the 

performance on d3 (Det-dominik-v3) and s1 (Det-sf-v1) tends to 

be relatively lower or more variable, suggesting possible domain 

differences or increased dataset complexity. 

4.3.2 Cross-validations on fundamental datasets 

To assess the generalization capability of each fundamental 

dataset, we conducted cross-validation tests using multiple 

YOLO models trained on the same dataset shown in Figure 5. For 

each training set, the models were evaluated on the test sets of all 

other datasets. The average F1-scores across models were then 

calculated to obtain a robust estimation of how well a training 

dataset supports cross-domain detection. These results are 

visualized as a heatmap in Figure 6. 

Based on the cross-dataset evaluation results shown in Figure 6 

and the previous training results in Figure 5, the datasets d2, d4, 

m1 and s1 were selected as the base datasets for the next phase 

of mixed-dataset training and validation. This decision was 

motivated by three key factors:  

• In-domain performance: All those datasets exhibited strong

F1-scores when models were trained and tested on the same

dataset, indicating clear and learnable feature patterns as

well as reliable annotations.

• Cross-domain generalization: Compared to other datasets,

models trained on d2, m1 and s1 exhibited relatively

balanced and consistent F1-scores across multiple unseen

domains (off-diagonal cells in Figure 6). Although d4

demonstrated less consistent cross-domain generalization

than d3 (Figure 6), it was selected based on its highly stable 

in-domain performance during training (Figure 5), which

reflects well-structured features and consistent annotations.

These properties are essential for establishing robust model

foundations in mixed-domain training.

• Diversity and complementarity: These datasets differ in 

content structure, defect patterns, and source domains (e.g.,

Dataset from Dominican church vs. from Marionette theatre

shown in Figure 2). This diversity provides complementary

information and broader feature coverage, which helps build

models that generalize better across varied and challenging

scenarios.

Although not selected as primary sources in the initial mixed-

domain training phase, datasets such as d1 and d3 will be 

revisited in subsequent research stages. Their distinct domain 

characteristics and promising cross-domain signals (as observed 

in Figure 6) may offer additional insights into model adaptability 

under diverse deployment conditions. 

4.3.3 Combinational Dataset Experiments 

To assess the impact of data diversity on model generalization, 

we constructed several mixed training sets by combining the 

augmented training data from selected fundamental datasets (e.g., 

d2, d4, m1, s1), while retaining each dataset’s original validation 

and test splits to ensure consistent evaluation. In addition to these 

combinations, three reference datasets were established: Det-

dominik, containing only data from the Dominican church; Det-

non-dom, from other sources; and Det-all, a fully mixed dataset 

aggregating all samples using the same augmentation and 

splitting strategy. This design enables training on diverse inputs 

while preserving domain-specific test conditions for cross-

dataset comparison. A summary is provided in Table 4. 

Three YOLO models，yolov9e, yolo11m, and yolo11x，were 

selected for this phase based on their consistently strong 

performance in previous evaluations, making them well-suited 

for further testing under mixed training conditions. All models 

were trained on the above mixed datasets for 150 epochs using 

the same hyperparameter setup as in the previous single-dataset 

experiments. Due to the architectural complexity of the yolov9e 

model, training on the Det-all dataset resulted in excessively long 

durations and persistent errors. As a result, this configuration was 

excluded from the final evaluation. Figure 7 presents the F1-

scores of trained YOLO models evaluated on the validation set 

derived from their respective training data combinations, 

reflecting the model’s fitting performance and early-stage 

generalisation within similar domains. As shown in the figure, 

the combinations involving datasets d2, d4, and m1 (e.g., d2d4, 

d2d4m1, and d2m1) consistently yield the highest F1 scores 

across all three models during the training stage, which confirms 

the generalisation potential of these data sources identified in 

earlier experiments.  

Mixed 

Dataset 

Data split 

train/val/test 
Shortcut Resources 

Det- d2d4 1124/79/79 d2d4 d2, d4 

Det- d2m1 1247/89/89 d2m1 d2, m1 

Det-d2m1s1 2568/184/184 d2m1s1 d2, m1, s1 

Det- d4m1 1157/82/82 d4m1 d4, m1 

Det- d2d4m1 1764/125/125 d2d4m1 d2, d4, m1 

Det-non-dom 1961/141/141 mixAdd m1, s1 

Det-dominik 3049/216/216 mixDom d1, d2, d3, d4 

Det-all 5010/357/357 mixAll 
d1, d2, d3, d4, 

m1, s1 

Table 4. Overview of combinational datasets used in 
cross-domain training experiments. (Each dataset is 

constructed by combining the augmented training sets 
and original validation/test sets of multiple fundamental 

datasets for detection as listed in the Table 2.) 

Figure 6. Average F1-score heatmap from test results: 

Each cell represents the average F1-score of all models 

trained on the training set of dataset Y (rows), evaluated 

on the held-out test set of dataset X (columns). The scores 

are averaged over all test images. 

Figure 7. F1-score heatmap from trained models  

on various mixed datasets. 
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The experimental results in Figure 8 reveal a clear trade-off 

between in-domain accuracy and cross-domain robustness. 

Specifically, when used individually or in limited combinations 

(e.g. d2d4, d2d4m1), datasets such as d2, d4 and m1 achieve 

exceptionally high F1-scores when evaluated in their respective 

domains. This suggests that models trained on these datasets can 

accurately capture domain-specific features. In contrast, mixed 

datasets such as d2m1s1 demonstrate superior generalisation 

across diverse test sets, consistently yielding balanced and stable 

F1 scores. While their peak performance on any single domain 

may be slightly lower, their robustness to domain shifts makes 

them more suitable for real-world applications where unseen 

environments are common. Therefore, this comparison 

highlights the strategic choice between training for precision in 

targeted domains and achieving robust generalisation for broader 

applicability. 

5. Evaluation

To enable an objective and independent evaluation of the system, 

we first selected two appropriate models, yolo11m-seg trained on 

Seg-dominik-v1 for segmentation and yolo11m trained on mixAll 

dataset (all training samples) for detection, which have a notable 

performance based on the results of the previous experiments. In 

collaboration with conservation experts, we manually measured 

the largest visible knot factor on various wood elements as 

reference data. The evaluated timber structure had not been part 

of any previous training and validation datasets, which ensures 

an unbiased assessment.  

In parallel, we randomly captured more than 900 images covering 

40 timber elements using an iPhone 13 pro max, with an average 

of over 20 images per timber. These images cover various knot-

bearing regions and different positions along each timber element. 

Then we processed them through the AI pipeline, which 

automatically segmented the timber surfaces, detected the wood 

knots, and calculated the knot factor for each image. For each 

timber element, we calculated the knot factor from all associated 

images and selected the maximum value as the final estimate, 

following the conservative principle of visual grading. The 

resulting values were used for comparison with expert 

measurements, as shown in Table 5. 

Across the 40 test timber elements, the AI pipeline successfully 

segmented most of the main surfaces that contain visible wood 

knots, and detected at least one knot per sample, allowing for the 

estimation of the corresponding maximum knot factor. However, 

a few surface segments could not be accurately extracted due to 

limitations in image quality and acquisition angles. These 

segmentation errors affected the subsequent knot detection and 

hindered the accuracy of factor estimation. Figure 9 illustrates the 

correlation between manually measured and AI-estimated knot 

factors across the 40 timber elements listed in Table 5. A Pearson 

correlation coefficient of 0.641 indicates a moderate positive 

relationship between the two measurements. 

Compared to the manually measured knot factors, the AI-derived 

factors exhibited an average relative error of 33.13% (excluding 

outliers) and a median relative error of 25.82%, which indicates 

a generally good alignment in terms of geometric accuracy. Upon 

detailed review, two key types of error were identified, as shown 

in Figure 10:  

• False knot detection: In two timber samples, the system 

mistakenly identified tree rings as knots, leading to an

incorrect factor calculation. This type of misclassification 

suggests a need for improved differentiation between knots 

and ring-like structures, potentially through KNN filtering

or similar post-processing techniques, which may help

increase detection accuracy in future iterations.

• Bounding box overestimation: In five other timbers, the knot

itself was correctly detected, but due to its small size, the 

bounding box was significantly oversized (Figure 10). This 

overestimation may be seen as a mild Type I error in knot

area evaluation and could be mitigated Otsu thresholding

optimisation or improved NMS, which are under testing but

not yet integrated into the current pipeline.

Timber 

number 

Manuel 

measured 

factor 

Factor 

from AI 

pipeline 

Relative 

error 

Timber 1 0.0625 0.0956 52.96% 

Timber 2 0.0652 0.1021 56.55% 

… … … … 

Timber 37 0.4118 0.4716 14.51% 

Timber 38 0.4130 0.3421 -17.18%

Timber 39 0.4375 0.2940 -32.80%

Timber 40 0.4583 0.5037 9.90% 

Figure 8. Average F1-score heatmap from test results on 

each test set of single datasets and mixed datasets across all 

three trained models in Figure 7. 

Figure 10. Samples illustrating false knot detection (left) 

and bounding box overestimation (right). 

Table 5. Sample-wise difference between AI-estimated 

greatest knot factors and manually measured knot factors. 

Figure 9. Correlation analysis of knot factors derived from 

manual measurement and AI-based estimation. 
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These results highlight that the geometric size of the bounding 

box, relative to the actual knot size, is a critical factor influencing 

the accuracy of the AI pipeline, especially for low contrast knots 

or irregular textures. Bounding box refinement strategies will 

therefore be essential to further improve the accuracy of 

automated structure grading.  

6. Conclusion

The key contributions of this research can be summarized as 

follows:  

• Development of a complete AI-assisted pipeline as a proof-

of-concept for segmentation, perspective correction, and

wood knot detection on historic timber surfaces, enabling

automated and interpretable structural assessment.

• Construction and feasibility study of large-scale, diversified

datasets tailored to historic timber, combining data from

multiple historic sites and imaging devices under real-world

conditions.

• Demonstration of practical applicability through expert-

validated evaluation on real timber elements, comparing AI-

derived grading factors with manual measurements to assess

real-world performance.

Although the current datasets cover diverse acquisition 

conditions and sites, including the Dominican church, they still 

reflect only a limited portion of historic timber variability. To 

enhance representativeness and model generalizability, future 

work will focus on expanding the dataset to include timber 

elements from a wider range of buildings and regions. In parallel, 

domain adaptation techniques will be explored to improve model 

robustness in unseen environments. 

This AI-assisted workflow is intended for deployment on low-

cost mobile or edge devices and will be tested by conservators 

and structural engineers under real-world conditions. Beside the 

improvements from current AI pipeline, future research will 

focus on:  

• Evaluating detection accuracy through detailed analysis of

knot size ratios (e.g., knot-to-width) against manual ground

truth.

• Extending defect detection to cracks, insect boreholes, and

surface degradation and other damage on timber surface.

• Integrating 3D data and georeferencing methods, such as

LiDAR, Structure-from-Motion (SfM), and sensor-based

measurements, for internal condition analysis and spatially

accurate defect mapping in large-scale timber structures.

The implementation code and dataset used in this study are 

available at https://woodknot-cipa25.github.io/. 
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