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Abstract 

Heritage masonry structures, with their complex geometries and variety of materials, pose significant challenges for accurate digital 
modelling and simulations for restoration and conservation purposes. In addition, traditional cultural heritage (CH) documentation 
workflows typically rely on geometric 3D acquisitions, often without supporting material diagnostics or structural insights. This 
work addresses this gap by introducing a data-driven workflow that leverages image-based information and 3D point clouds to 
extract both geometric and material-related attributes for energy analysis applications. The proposed methodology leverages Deep 
Learning (DL) and Finite Element Method (FEM) modelling to support energy simulation for cultural heritage assets. The proposed 
workflow integrates orthoimages and 3D data to segment masonry textures, estimate wall thickness, and generate a semantically 
enriched mesh tailored for energy analyses. A YOLO-based model identifies stone and mortar regions in high-resolution imagery, 
while point cloud voxelization and plane fitting are used to compute local thickness values. This information feeds into an adaptive 
meshing strategy, where mesh resolution is adjusted based on material texture and geometric features. A tunable parameter β enables 
control over mesh density, allowing for optimization of computational performance in thermal FEM simulations. This approach 
enables the derivation of meaningful simulation-ready 3D models from limited survey data.  

1. Introduction

Masonry is one of the oldest and most enduring construction 
techniques and forms the backbone of countless worldwide 
cultural heritage (CH) buildings. Masonry digitalization and 
segmentation processes, recently enriched with Machine and 
Deep Learning (ML/DL), enable precise structural analyses and 
interpretations, enhancing CH preservation through advanced 
digital workflows.  
The analysis of heritage buildings for structural health or thermal 
performance presents unique challenges. Indeed structural 
diagnostics (Michael et al., 2024), energy efficiency (Cespedes-
Cubides and Jradi, 2024), and real-time simulation (Xiong et al., 
2024), require careful adaptation to the complexity and historical 
sensitivity of heritage sites. These approaches often rely on mesh-
based 3D models and benefit from standardized file formats that 
support interoperability and scalability, yet they face challenges 
in accuracy and data processing. A primary challenge in this 
domain is the geometric complexity of heritage buildings. Their 
irregular and often deteriorated shapes make accurate 3D 
modelling particularly challenging. While traditional Building 
Information Modeling (BIM) tools offer powerful solutions for 
modelling regular structures, they struggle to capture the organic, 
non-standard shapes typical of historical architecture. 
Furthermore, CH buildings often lack comprehensive surveys, 
including essential inspections, structural assessments, and 
diagnostic tests or material analyses, which are crucial for 
informed conservation and restoration efforts.  

1.1 Objectives and data 

This work investigates the use of DL solutions to support and 
enhance finite element modelling (FEM) in cultural heritage 
applications. By leveraging AI-driven methods for automated 
feature extraction, modelling and analysis, this research 
introduces solutions optimized for a 3D FEM, enabling high 

precision in energy simulations. Non-geometric features for the 
FEM and thermal analyses are deduced, deriving this information 
directly from reality-captured data. By working with images and 
point clouds, we infer material-related information, such as 
masonry texture, to extract insights relevant to thermal 
performance. While the integration of real-world data in 
structural FEM is well explored, its application in energy or 
thermal modelling remains relatively underdeveloped.  
Therefore, the aim of this paper is twofold:  

1. to apply DL networks for extracting material-related
information from visual data; 

2. to present a workflow that derives semantically enriched
meshes suitable for the energy analysis of CH buildings.

Figure 1. 3D reality-based survey of the Pretorio Palace in 
Trento (IX-XIII century), Italy. 

The implemented methodology is tested on the Palazzo Pretorio 
in Trento, Italy (Figure 1). The 3D survey of the building 
(Barbini et al., 2024) comprises 1080 photogrammetric images 
and 172 terrestrial laser scanner (TLS) scans.  The scans cover 
both indoor and outdoor environments and were acquired with a 
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Faro Focus S120, whereas images were captured with a DJI 
Mavic 2 Pro (aerial imagery) and a Sony Alpha 6000 (ground-
based image capture). Image and range data were processed and 
integrated to create a colorized point cloud of about 50 mil. 
points. Orthophotos of the eastern and western façades used for 
the reconstruction were generated from a photogrammetric 
survey using a Sony Alpha6000 DSLR mounted on a 9 m 
telescopic pole.  

2. Related works 

Recent developments in structural or energy monitoring for CH 
structures increasingly leverage advanced sensing technologies 
and AI-based techniques. 3D scanning has been widely employed 
for displacement tracking (Moon and An, 2024), and integrating 
reality-based measurements in the mesh modelling process 
further enhances accuracy in the displacement detection (Zhang 
et al., 2023). Recent work on controllable mesh generation using 
diffusion models has enabled fine-grained, high-quality mesh 
synthesis (Lyu et al., 2024), while related approaches address 
multi-view inconsistencies in textured meshes through optimized 
alignment and stitching (Zhao et al., 2024; Zheng et al., 2024). 
AI-based solutions for 3D reconstruction (such as Neural 
Radiance Field – NeRF) have also been recently tested and 
assessed for the CH context (Mazzacca et al., 2023; Murtiyoso et 
al., 2024; Haitz et al., 2024). 
In parallel, DL methods have also emerged for detecting masonry 
wall patterns (Forster et al., 2023) or identifying damage using 
transformer models with YOLO (Idjaton et al., 2022).  
Structural analysis spans applications including rubble masonry 
interventions (Valero et al., 2018), FEM modelling of brick walls 
(Ahiwale et al., 2023), TLS-FEM integration for tunnel 
deformation monitoring (Yang et al., 2022), and timber structure 
analysis (Özkan et al., 2025). FEM techniques are increasingly 
being integrated with point cloud-based models to improve the 
accuracy of deformation and stress analysis in bridges (Matono 
and Nishio, 2024). 

2.1 Meshes for FEM analysis 

FEM is a numerical technique used to solve Partial Differential 
Equations (PDEs) by discretizing a spatial domain Ω into finite 
elements (Liu and Glass, 2013).  These elements, such as 
triangles and rectangles (2D) or tetrahedrons and hexahedrons 
(3D), form a mesh, which is a non-overlapping tessellation of the 

domain Ω. Solutions are computed at nodes or within domain 
elements, using shape functions to interpolate displacement, 
strain, and stress. Each element contributes to the global system, 
ensuring solution continuity across the domain (Kutlu and 
Soyluk, 2024).  Meshes for structural analysis are commonly 
generated from manually developed CAD or BIM models (Zou 
et al., 2024a; Zou et al., 2024b), with IFC files acting as a widely 
adopted neutral and structured format. A watertight, clean 
geometry, free from gaps and overlaps, is crucial for producing 
valid surface or volume meshes, particularly in solid or nonlinear 
simulations.  
As reported in Liu and Glass (2013), denser and more accurate 
meshes improve Finite Element Analysis (FEA) results but 
require increased computational time and resources. To 
effectively use FEM models for analyses on buildings, such as 
structural or thermal simulations, the building geometry must be 
(Zou et al., 2024a): 
 Discretized into elements (planar or volumetric meshing). 
 Conforming, in the sense that all adjacent elements must

share faces without any gaps.
 Enriched with appropriate material properties (e.g., shear

resistance, thermal conductivity, reflectance).

3. Methodology

The proposed methodology combines geometric and semantic 
information extracted from images and point clouds. It integrates 
masonry patterns from image analysis with spatial information 
from 3D point clouds to enable a data-driven unified 
interpretation of spatial and contextual information of masonry 
elements. The proposed workflow is summarized in Figure 2, 
with the orthoimage of the façades used for the extraction of the 
masonry pattern and the TLS point cloud for deriving wall 
thickness. Then, information is merged to generate an adaptive 
mesh model. The key points of the pipeline are: 
1. Object detection in image tiles. Masks are extracted with

YOLO network to identify architectural elements, such as
stone blocks and mortar joint (Section 3.1).

2. Wall thickness values extraction from the 3D point cloud.
Based on the extracted stone masks, a FEM model is 
generated from vectorized patterns. The point cloud is then
voxelized to compute thickness values per voxel (Section
3.2).

Figure 2. General workflow for 2D and 3D data processing and comparison with ground truth thermal data. 
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3. Mesh grid creation and downsampling. Mask polygons
(point 1) are vectorized to generate a density pattern, which
is refined based on both the mask classification and wall
thickness, denser in stone regions and coarser in mortar areas.
Stone zones identified in pixel-based images lead to finer
meshes, while mortar regions result in simplified ones. A grid
is overlaid on the previous pattern, and a parameter β controls
point downsampling to define varying mesh densities
(Section 3.3).

4. Evaluation of thermal analysis for FEM. Thermal analysis is 
conducted using meshes with varying levels of density, and
the resulting temperature distributions were validated against
ground truth (GT) thermal imagery (Section 3.4).

Each key step is further explained in the next paragraphs. 

3.1 YOLO mask extraction 

Starting from orthoimages of the main facades of the Palace 
(Section 1.1), we extracted 640×640 pixel tiles from the RGB 
datasets. A DL model based on the YOLOv7 architecture was 
trained to detect and segment individual stones (Figure 3) and 
separate them from mortar. The network was trained using a 
dataset of 203 annotated images. 
Polygons are extracted from the image masks detected by YOLO 
in order to compare the results of the DL detection with the 
manually generated GT masks. To eliminate redundant and 
overlapping bounding boxes, a Non-Maximum Suppression 
(NMS) algorithm is applied. This technique selects the bounding 
box with the highest confidence score and suppresses all other 
boxes whose Intersection over Union (IoU) exceeds a predefined 
threshold (IoU > 0.55). 

3.2 Thickness extraction 

In parallel, the TLS point cloud is processed using the 
methodology outlined by Roman et al. (2024), yielding 
classification results that are consistent with those reported in that 
study. Normals are computed for the classified walls, and the 
DBSCAN algorithm is applied to distinguish between internal 
and external wall surfaces. The 3D point cloud is voxelized at a 
resolution of 0.50 m, in order to balance geometric detail with 
manageable computational demands. For each voxel, the best-
fitting planes of the internal and external wall surfaces are 
computed, and the wall thickness (thw) is estimated as the 
distance between them (Fig 4). 
To augment the YOLO-derived vectorized mask patterns (𝑃YOLO) 
with geometric context, each vertex of the mask polygons is 
assigned the thickness value of the nearest voxel to which it 
belongs. 
The point cloud coordinates, YOLO mask vertices, and voxel 
centroids are then defined as follows (Eq. 1, Eq. 2, Eq.3): 

𝑃las = {𝑝௜ = (𝑥௜ , 𝑦௜ , 𝑧௜) ∣ 𝑖 = 1, … , 𝑁} (Eq. 1) 
𝑃Yolo = {𝑝௝

ᇱ = ൫𝑢௝ , 𝑣௝, 𝑤௝൯ ∣ 𝑗 = 1, … , 𝑀} (Eq. 2) 

 𝑃vox = {𝑣௞ = ൫𝑣௫, 𝑣௬, 𝑣௭൯ ∣ 𝑘 = 1, … , 𝐿} (Eq. 3) 

The RANSAC plane-fitting algorithm is applied separately to the 
internal and external surfaces of 𝑃las  to estimate the main 
reference planes for the wall. Additionally, RANSAC is applied 
at the voxel level to fit local planes of internal and external 
surfaces within each voxel, enhancing accuracy. 
For each voxel centroid 𝑃vox , the Euclidean distance between the 
locally fitted internal and external planes is then computed, 
representing the local wall thickness (thw,vox), as shown in Eq. 4. 

𝑡ℎ௪,௩௢௫  =  || 𝑝int  −  𝑝ext ||  (Eq. 4) 

Figure 3. Example of YOLO mask extraction with confidence 
value (left) and only masks (right). 

Figure 4. Wall surfaces and local thickness (thw,vox) values 
extracted. 

YOLO mask vertices are then reprojected onto the main 2D 
vertical plane, embedding thickness data. Each vertex is defined 
by: 
 Voxel centroid reference (𝑃vox).
 Vectorized mask vertices (𝑃YOLO).
 Local wall thickness value (thw,vox).

3.3 Finite Element Model from masks  

To generate the data-driven parametric mesh, all vectorial masks 
are first extracted from the YOLO-processed image tiles and used 
to reconstruct a comprehensive mask for the entire input image. 
A binary depth map is then produced to highlight areas with a 
higher density of detected stones (Figure 5). 
This map effectively distinguishes regions with more pronounced 
masonry textures, as well as blue-shaded areas indicating greater 
concentrations of mortar or small, not-detected stones. The 
resulting binary map provides a clearer and more effective 
visualization of these regions. 
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Mesh parameterization starts with an initial uniform grid 
generated according to the average dimensions of the detected 
mask patterns.  
This base grid is then adaptively refined using data-driven criteria 
to balance geometric accuracy and computational efficiency: 
 In regions marked with a red mask, indicating stone texture, the 

grid is locally refined by reducing cell size in all directions,
enabling higher-resolution representation of complex surfaces.

 Conversely, in blue mask regions, indicating little or no stone
texture, the grid is coarsened by enlarging cells in all directions,
simplifying low-detail areas.

 Where windows are present, the mesh is absent.

Figure 5. Masks (on the left) localizing stones (red masks), 
mortar (blue masks) and windows (white masks) adaptive grid 
data-driven (on the right).  

Grid size is also modulated based on thickness values: it is 
reduced in regions where the local thickness values exceed the 
90th percentile of all the thickness values and increased where it 
falls below the 10th percentile. For intermediate thickness values, 
the original grid resolution is maintained.  
These steps are illustrated in Figure 6: (a) the reconstructed 
binary map; (b) adaptive vertices grid with computed 
intersections; (c) grid vertices classified as stone or mortar; and 
(d) the resulting adaptive mesh.
Finally, the parameter β is introduced to control the density of 
vertices within the grid.
This parameter selectively downsamples the internal vertices 
while preserving those located along boundaries and around 
window openings. The resulting vertices pattern serves as the
basis for mesh triangulation. While a higher mesh resolution
improves the accuracy and quality of simulation results, it also
significantly increases the computational load and file size.
Three mesh densities were defined, retaining respectively 25%,
50%, and 75% of vertices controlled by the parameter β.

Figure 6. Workflow for data-driven adaptive mesh generation. 

3.4 FEA analysis 

The objective is to analyse how the density of a data-driven mesh 
influences thermal performance simulations. This investigation 
is based on the underlying assumption of differing thermal 
properties between mortar joints and stone textures.  
As illustrated in Figure 7, thermal transmittance is notably higher 
in the mortar regions compared to the stone, confirming this 
premise. The thermal imagery clearly demonstrates that areas 
composed predominantly of stone exhibit superior thermal 
insulation properties relative to those consisting primarily of 
mortar. 

Figure 7. Thermal image used as GT for further simulations. 

Thermal analysis used outdoor conditions matching the thermal 
imaging day, with a fixed indoor temperature set by standards to 
simulate wall heat transfer. The U-value was set at 3.2 W/m²K, 
based on wall thickness from point cloud data and aligned with 
similar buildings in the area. Each mesh was processed by 
extracting vertices, triangular faces, and surface areas. Heat 
transfer intensity Q for each triangle was calculated using (Eq. 
5): 

𝑄 =  𝑈 ⋅ 𝐴 ⋅ 𝛥𝑇 (Eq. 5) 

where U denotes the overall heat transfer coefficient (thermal 
transmittance), A is the area of the triangular face, and ΔT the 
temperature difference across the wall, representative of the 
indoor-outdoor difference in thermal conditions.  

4. Results

The evaluation of the presented methodology is structured around 
three main components: (1) object detection performance using 
the in-house pre-trained model YOLOv7, with visual and 
quantitative results on tiles; (2) mesh quality generation across 
density variations; and (3) thermal simulation outputs.  
The next sections report the proposed workflow (Figure 2) 
applied to the third floor of the eastern and western façades. 
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4.1 YOLO masks evaluation 

To quantitatively assess detection performance, the predicted 
mask polygons generated by the YOLOv7 network are compared 
against manually annotated GT masks. The following evaluation 
metrics are computed (Eq. 6, Eq. 7, Eq. 8): 

 Intersection over union (IoU): 

𝐼𝑜𝑈 =
Area of Intersection

Area of Union
(Eq. 6) 

 F1 score:

𝐹1 =
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
(Eq. 7) 

 Precision:

Precision =
True Positive

True Positive + False Positive
(Eq. 8) 

The Hungarian algorithm matches GT and YOLO polygons by 
IoU, discarding pairs below 2 cm, 5 cm, or 10 cm thresholds. 
Table 1 report results of the YOLO masks extraction for some 
tiles, compared with the manual annotated ones, at 5 cm. 

# tile Matched 
pairs 

Average 
IoU 

Average 
F1 

Average 
Precision 

east_tile_0008 74 0.58 0.94 0.91  

east_tile_0009 92 0.68 0.97  0.96 

east_tile_0010 57 0.69 0.94 0.90  

east_tile_0012 62 0.66  0.97 0.95  

west_tile_0000 13 0.62  0.82  0.74 

Table 1.  Results for some tiles at 𝑡ℎ =  0.05 . 

As shown in Figure 8, larger, regularly shaped stones, especially 
in window and door frames, are not effectively detected due to 
their geometric regularity, which contrasts with the irregular 
stone patterns the model has predominantly been trained on, 
leading to reduced detection confidence.  
Similarly, elongated stone slabs near the upper portions of the 
wall are frequently missed, likely due to their atypical aspect 
ratios falling outside the model's learned shape distribution. 
In contrast, irregularly shaped stones that constitute the main 
body of the wall are effectively detected by the YOLO model. 
Quantitative evaluation against the GT shows that detection 
performance improves with tolerance thresholds, achieving an 
average precision of 0.69 at a 2 cm tolerance, 0.84 at 5 cm, and 
0.98 at 10 cm.  
These results confirm the network’s robustness in identifying 
irregular masonry units while also highlighting its limitations in 
handling geometrically uniform or atypically proportioned 
elements relative to the data it was trained on. 
The evaluation metrics are summarized in Table 2, while visual 
detection results for a selection of tiles are presented in Figure 9. 
Additionally, Figure 9 shows two examples, where red outlines 
indicate the manual ground truth (GT) and blue outlines represent 
YOLO predictions, highlighting some limitations of the YOLO 
model in terms of: 
1. Detection of elongated stones (green): The model

underperforms with long/narrow stones due to training data
biased toward irregular shapes with standard aspect ratios.

2. Shape simplification (red): Regular or symmetric stones are
sometimes oversimplified, resulting in masks that don't fully
capture their contours.

3. Aggregation of small stones (yellow): Regular or symmetric
stones are sometimes oversimplified, resulting in masks that
don't fully capture their contours.

4. Difficulty with regular-shaped stones (blue): Regular or sym-
metric stones are sometimes oversimplified, resulting in
masks that don't fully capture their contours.

Figure 9. Inaccuracies of YOLO masks extraction. 

4.2 Adaptive mesh generation 

To assess reconstruction fidelity and mesh efficiency, two 
meshing strategies were applied to three façade sections: (a) 3rd 
East Floor, (b) West Façade, and (c) 3rd West Floor. Figure 10  

Figure 8. Comparison between GT data (left) and YOLO 
extracted masks (right). 
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shows the proposed method’s ability to retain structural features 
and embed thickness metadata while reducing data complexity. 
Figure 11 compares vertex (bars) and face (lines) counts 
generated by Method 1 and the proposed Method 2 across the 
three segments. Method 1 projects the point cloud onto a vertical 
plane, applies subsampling at β25, β50, and β75 levels, and uses 
Delaunay triangulation. Method 2 integrates YOLO-based 
semantic segmentation with adaptive meshing, yielding lighter, 
semantically rich models. 

Threshold 
[m] 

Average  
IoU 

Average  
F1 

Average 
Precision 

0.02 0.53 0.61 0.70 

0.05 0.66 0.74 0.84 

0.10 0.84 0.99 0.98 

Table 2. YOLO mask extraction metrics at three threshold levels. 

Figure 11. Point and face count comparison between Method 
1 and proposed Method 2 across varying β values. 

Results show Method 1 preserves more geometry but at higher 
computational cost, while Method 2 achieves major reductions, 
particularly at β50 and β75, without compromising key features. 
The dual-axis graph underscores Method 2’s ability to produce 
efficient, simulation-ready models. Notably, no standardized 
benchmarks currently exist for evaluating mesh quality in the 
context of energy analysis. 
The resulting meshes support thermal simulations.  
While surface area (A) and total heat transfer (Q) stay constant, 
heat distribution depends on the decimation parameter β. Higher 
β produces finer meshes with more accurate gradients; lower β 
yields coarser meshes with less spatial detail.  

4.3 FEM simulations 

Figure 12 illustrates mesh density variations for Method 1 (a–c) 
and the proposed method (d–f) across different β levels, 
evaluated under thermal simulation settings using the parameter 
framework from Section 3.4 and Equation 5. Each pair (a–d, b–
e, c–f) enables direct comparison of the same detail at equivalent 
resolution between the two methods. 

Figure 12. Mesh comparison between Method 1 (a-c) and the 
proposed Method (d-f) across β25, β50, β75. 

Despite simplification, the proposed method maintains the 
accuracy needed for thermal applications, also by embedding 
thickness metadata, achieving a balance between geometric 
reduction and fidelity.  

4.4 FEM analysis and evaluation 

Thermal analysis on all meshes obtained with the presented 
method confirms accurate representation of global heat transfer 
despite reduced detail. Areas of energy loss, such as thickness 
transitions, remain detectable. Simulation accuracy depends on 
mesh density (β) and spatial material encoding. In the East façade 
(Figure 13), β-sampled meshes preserve key thermal gradients, 
notably between stone units and mortar joints, consistent with 
ground truth thermal patterns.  

Figure 10. Mesh density visualization for the entire west façade (left) and the third floor of the eastern façade (right). 
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As explained in Section 3.6, simulation parameters replicate real 
acquisition conditions. The temperature labels in Figure 13 
confirm alignment between simulated and observed thermal 
behaviour, validating the method’s reliability for thermographic 
analysis under decimated, semantically enriched meshing. This 
validates the method’s suitability for thermographic evaluation 
under geometric simplification.  
 

 
 Figure 14 shows the proposed pipeline applied to West façade, 
starting from the original image, followed by YOLO mask 
outputs, and thermographic analysis highlighting key anomalies. 
The lower rows show progressively simplified, semantically 
guided meshes (β = 0.25, 0.50, 0.75), effectively preserving 
structural details. Coloured boxes link details and features across 
views, showing consistency and interpretability of the results. 
Regarding the same façade (Figure 15), two detailed areas, 
labeled (A1) and (A2), are presented to illustrate key outcomes 
of the thermal simulations. Detail (A1) focuses on the upper 
portion of the façade, where the masonry pattern was accurately 
detected and successfully incorporated into the mesh generation 
process. The simulated heat distribution in this region aligns 
closely with the reference thermal image, validating the 
reliability of the adaptive meshing approach in reproducing 
localized thermal behavior based on texture-informed 
segmentation. Moreover, detail (A2) demonstrates a key feature 

of the workflow: the integration of wall thickness during mesh 
construction.  
 

In this case, a bricked-up window, barely distinguishable 
visually, is captured through voxel-based point cloud analysis 
due to a localized reduction in wall thickness.  
This variation is automatically embedded in the FEM mesh, and 
the simulation correctly predicts increased thermal dispersion in 
the thinner region, confirming the impact of geometric 
parameters on heat transfer simulation.  
These results underscore the proposed method’s value in CH 
thermal diagnostics, as it fuses visual, geometric, and semantic 
data to enhance mesh fidelity and improve thermal analysis 
reliability.  
 

5. Conclusions 

This work presented an integrated, data-driven workflow 
combining DL, 3D point cloud processing, and adaptive meshing 
to support CH monitoring and energy analysis. By combining DL 
and numerical simulations, the reported framework presents a 
breakthrough for the thermal analysis and simulations of heritage 

 
Figure 13. Thermal simulations at different mesh resolutions 
with the presented method, and output temperatures. 

 

 
Figure 15. Western façade: adaptive mesh reconstruction (Section 1), focus on the bricked-up window (Section 2), simulation 
highlighting the bricked-up window and comparison with thermal image (Section 3). 
 

 
Figure 14.   Multi-scale results of the proposed method at β25 
(a), β50 (b), and β75 (c). Insets (a1–c4) show consistent thermal 
and geometric feature preservation across decimation levels. 
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buildings. The image segmentation model effectively identified 
irregular masonry, achieving average precision from 0.68 (2 cm 
tolerance) to 0.98 (10 cm). Limitations were observed with 
regular elements (e.g., lintels, jambs) due to divergence from the 
training set. High F1 scores (>0.90) validate robust pattern 
detection via IoU thresholds. Adaptive meshing for FEM 
analysis, driven by segmentation and thickness inputs, balanced 
detail and performance, as shown in the close outputs’ 
temperatures obtained, while the β parameter enabled controlled 
simplification while preserving structural and thermal reliability.  
Future work includes enhancing detection of regular units, auto-
mating material inference from texture, and integrating time-se-
ries data for predictive CH diagnostics. 
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