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Abstract 
 
This paper explores the application of AI technology in cultural heritage data management, focusing on wall paintings’ condition 
assessment data from Mogao Grottoes, and constructs a framework integrating graph data structures with an AI model. The method 
integrates multi-source data from Mogao Grottoes wall paintings surveys, such as handwritten records and digital archives, to 
facilitate efficient analysis and rapid query of deterioration and spatio-temporal information. Leveraging this novel technical 
framework, the study enhances the intelligence of cultural heritage data management, offering valuable approaches for the 
conservation of similar heritage sites. The findings effectively advance the digital and intelligent transformation of cultural heritage 
conservation, aligning with the focus on data-driven diagnosis for conservation decision-making. 
 
 

1. Introduction 

As a world-renowned cultural heritage site, the Mogao Grottoes 
represent the largest and best-preserved treasure trove of 
Buddhist art globally, boasting immense historical, artistic, and 
scientific value (Fan, 2000). The Mogao Grottoes have been 
preserved for thousands of years, which is closely related to its 
occurrence environment (Li et al., 2010). Affected by their own 
muddy materials and natural environmental factors, wall 
paintings that have survived through thousands of years have 
developed various damages such as flaking, efflorescence, 
hollowing, and fading (Chen, 2017). These issues not only 
compromise the artistic integrity of wall paintings (Pei and He, 
2020), but also threaten their long-term survival (Li et al., 
2013). To address this, we have established an early-warning 
monitoring platform to continuously track microenvironmental 
parameters (temperature, humidity, CO₂ concentration) within 
caves and their surroundings. This enables proactive mitigation 
of deterioration progression through precise environmental 
control, complemented by regular visual inspections to monitor 
dynamic changes in deterioration. Decades of wall paintings 
conservation efforts have yielded a vast corpus of records (both 
handwritten and digital), documenting wall paintings content, 
deterioration types, spatial distribution, developmental changes, 
and historical conservation interventions. These materials form 
the basis for long-term cave preservation and health assessment. 
However, the complex structure of the Mogao Grottoes, where 
each cave wall harbors multiple deteriorations, poses challenges 
for data analysis. For instance, tracking deterioration trends 
across caves over time involves massive datasets, labor-
intensive documentation review, and difficulty in comparative 
analysis. Traditional relational database management 
exacerbates these issues; it requires writing lengthy multi-table 
join queries (Gong et al., 2025), and incurs substantial data 
collection delays. By relying on tabular organization, traditional 
systems struggle to flexibly represent the spatio-temporal 
relationships among caves, walls, and deterioration, hindering 
data management and impeding evidence-based conservation 
decision-making. 
 

In contrast, graph-structured data using nodes and edges 
intuitively connects caves, walls, and deterioration. Each cave 
can be modeled as a node, with wall and deterioration locations 
as sub-nodes, while edges define spatio-temporal relationships. 
This framework enables rapid deterioration localization and 
detailed spatio-temporal evolution mapping, facilitating 
dynamic deterioration monitoring. 
 
Recent advancements in AI technology, from theoretical 
research to cross-disciplinary applications (Allegra et al., 2022), 
have transformed fields like image recognition (Cheng et al., 
2018), where deep learning models excel at feature 
identification (Dubois et al., 2024), and natural language 
processing, where pre-trained models enhance translation and 
question-answering efficiency (Asmaa et al., 2023). In cultural 
heritage, AI has enabled museum intelligent navigation 
(Menotti, 2025; Wang et al., 2025), and data-driven 
deterioration diagnosis for targeted restoration planning (Yi et 
al., 2024). 
 
Grounding our work in daily Mogao Grottoes conservation 
practices, we propose integrating graph data structures with AI 
models to develop an innovative wall paintings condition 
assessment system. The graph structure efficiently organizes 
multi-source data into an intuitive knowledge graph for rapid 
retrieval, while AI leverages its analytical power to mine graph 
data, supporting scientific conservation planning. This research 
not only elevates wall paintings conservation management at 
Mogao Grottoes but also provides a replicable framework for 
global heritage sites, advancing the digital and intelligent 
transformation of cultural heritage conservation. 

2. Methods 

2.1 AI-Assisted Structured Data Processing 

In the long-term conservation surveys of Mogao Grottoes wall 
paintings, the earliest paper archives documenting wall 
paintings damage date to 1976 and systematic electronic record-
keeping has been conducted since 2007. These materials 
meticulously document wall paintings deterioration across 492 
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caves, capturing protection status from multi-dimensional and 
temporal perspectives. For this study, 20 representative caves 
(4.1% of the total) were selected as experimental cases to 
validate the accuracy of the proposed method. Given the 
extensive scale of the 492-cave dataset, these 20 caves were 
purposefully chosen to demonstrate the method’s effectiveness 
in handling diverse deterioration types (e.g., flaking, salt 
efflorescence, detachment), ensuring the method’s validity can 
be rigorously tested without overwhelming data complexity.  
 
To efficiently extract information from handwritten records, we 
employ AI-OCR (Optical Character Recognition) tools. 
Historical handwritten materials with black carbon ink, remain 
remarkably legible due to the ink’s durability. However, the 
idiosyncratic writing habits of recorders, marked by conjoined 
strokes and penmanship characteristics, pose challenges for 
automated recognition. Despite these constraints, the system has 
achieved an 85% overall accuracy rate in extracting key 
information from handwritten materials, as validated by 
balancing ink clarity with specialized processing for 
handwritten nuances (Figure 1). All identified errors are 
subsequently manually corrected by heritage conservators to 
further refine data accuracy. 

 
Figure 1. OCR processing example of handwritten Records. 

To efficiently structure semi-structured data, we adopt a human-
supervised, rule-based AI-assisted approach, where each 
electronic document is manually processed to guide the AI in 
entity extraction. Leveraging deep learning-based models (e.g., 
Doubao, DeepSeek) trained on extensive corpora and 
predefined rules for cave numbers, deterioration types, and 
spatial locations, the AI generates entity annotations, which are 
then meticulously reviewed by heritage experts to ensure 
accuracy. This hybrid workflow combining AI’s contextual 
understanding with rule-based parsing and human oversight-
enables us to extract key information such as cave number, 
deterioration location, type, and discovery time from each 
document individually. For deterioration identification, we pre-
set comprehensive keyword rules via AI, covering flaking, salt 
efflorescence, and other deterioration types. The system then 
intelligently extracts quantitative severity data (area, length), 
location, descriptions, and repair status from complex texts, 
with each deterioration in the same location analyzed 
independently. 
 

Following the AI-driven extraction, all validated entities are 
manually saved as standalone JSON files centered on cave 
numbers. These JSON files are then converted to Excel format 
to standardize the dataset, facilitating seamless import into 
graph databases for further analysis (Figure 2). This process 
ensures manual supervision of each step from AI generation to 
format conversion, balancing algorithmic efficiency with human 
precision in documenting wall painting deterioration across six 
dimensions: type, severity metrics, location, description, 
emergency repair necessity, and repair history. 

 
Figure 2. AI-structured process of wall paintings protection data 

in Mogao grottoes. 

2.2 Cave Spatial Relationship Model Based on Graph Data 
Structure 

Mogao Grottoes comprise 492 caves distributed across different 
levels, with some caves adjacent to each other even sharing 
walls where wall paintings exist on both sides. Traditional 
relational databases face significant limitations in describing 
this complex spatial structure. Relational databases store data in 
tables, each associated with primary and foreign keys, but the 
spatial relationships of Mogao Grottoes defy simple linear or 
hierarchical modelling. For instance, cave locations include 
anterior chambers, main chambers, Yongdao, etc., each 
subdivided into east, west, north, south walls, ceilings, niches, 
and more. The shared walls between caves, e.g., the south wall 
of one cave’s main chamber being the north wall of another 
cave’s main chamber is difficult to represent concisely in 
relational databases. Forcing such relationships into a relational 
model results in overly complex table structures, inefficient join 
queries, and an inability to intuitively reflect spatial dynamics. 
 
Graph data structures effectively address these challenges by 
integrating each cave’s unique spatial architecture with 
commonalities in wall painting deterioration. Specifically, the 
model defines four core node types: Cave nodes (identified by 
unique Cave_number), Cave location nodes, deterioration 
location nodes and wall painting deterioration type nodes, 
which predefine categories such as flaking, powdering, and 
paint loss. Spatial relationships are formalized through directed 
edges: edges labelled adjacent connect Deterioration_location 
nodes when caves share walls (establishing cross-cave spatial 
links between corresponding deterioration sites); Hierarchical 
containment is implemented via contain edges, forming a nested 
structure: Cave→Cave_ location→Deterioration_location; Each 
Deterioration location node is further linked to Deterioration 
types through With_wall_paintings_Deteriorations edges, which 
record attributes like deterioration area (e.g., 0.8 m²), repair 
status (Is_it_fixed), and quantification data. This node-edge 
modelling clarifies the spatio-temporal interplay between 
Mogao Grottoes’ structural space and wall paintings 
deterioration information, supporting dynamic analysis of 
multiple documented deterioration types. The framework’s 
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ability to represent both containment hierarchies and lateral 
adjacencies is visualized (Figure 3), laying a robust foundation 

for data-driven conservation decision-making. 

 
Figure 3. Schematic diagram of graph-structured data for caves spatial layout in Mogao Grottoes. 

2.3 Retrieval of Wall paintings Deterioration Map 
Structure Database by AI 

With the continuous advancement of systematic condition 
assessment for Mogao Grottoes wall paintings, accumulated 
deterioration data exhibits characteristics of massive scale, 
complex structure, and dynamic growth. Traditional manual 
retrieval faces critical bottlenecks: conservators spend hours 
reviewing records, hindering emergency response, while manual 
analysis is prone to subjective biases: fatigue and professional 
discrepancies often cause keyword extraction errors. 
  
Although traditional relational databases enable basic keyword 
matching, they struggle with complex semantics and multi-
dimensional logical relationships. Take the query “Find records 
of flaking-related deterioration added after 2020 with an area > 
0.3 m² on the main room’s east wall”–traditional systems rely 
on single-keyword matching, failing to analyze logical 
relationships among spatial location (main room east wall), area 
threshold (0.3 m²), time range (post-2020), and deterioration 
type (flaking). In practice, such searches may incorrectly return 
“flaking < 0.3 m²” or “pre-2020 flaking-like issues” due to 
lacking semantic understanding, causing result deviations from 
real needs. This inefficient retrieval mode has become a core 
technical barrier for Mogao wall paintings conservation. In 
critical scenarios like relic deterioration emergency response or 
preventive conservation planning, the inability to obtain timely 
accurate data undermines the scientific basis for conservation 
decisions, delaying research and risking missed intervention 
opportunities. Thus, introducing AI-powered intelligent 
retrieval and constructing an efficient data system are urgent to 
shift Mogao conservation from experience-driven to data-driven. 
 
Graph database technology has emerged as a cornerstone for 
cultural heritage data management, leveraging its core 
advantage in processing complex relational data. The full-

process system herein adheres to strict verification: first, 
heritage experts perform multi-round manual validation on raw 
data to ensure accuracy (e.g., deterioration location, type); next, 
a hierarchical data structure is automatically constructed in 
Excel via preset templates, using a standardized field system 
Cave-Cave_Location-Deterioration_Location-
Deterioration_Type-Quantitative_DataDescription-
Repair_Status for structuring; finally, the validated dataset is 
imported into a Neo4j graph database to form a semantically 
associated knowledge graph, laying a structured foundation for 
intelligent retrieval. 
 
The AI model uses deep learning to parse semantic association 
relations between graph nodes, upgrading traditional keyword 
matching to implicit relationship mining, which is supported by 
pre-validated Excel data ensuring graph database semantic 
consistency. For dynamic data updates, the AI leverages 
Neo4j’s incremental learning framework for real-time 
adaptation, while Excel’s pre-structured templates enable cross-
source verification with graph data. Regarding hallucination 
control, the system integrates a dual manual verification 
mechanism: conservators first perform secondary data 
validation in Excel, then subsequent reviews of critical AI 
outputs (e.g., emergency repair recommendations), correcting 
deviations by cross-referencing original records. This triple 
guarantee rigorous preprocessing graph semantic reasoning—
continuous human validation—ensures retrieval reliability and 
minimizes inference errors, fully addressing Mogao 
conservation’s dynamic decision needs. 
 
When users pose natural-language queries, the AI model parses 
questions to extract key elements and their relationships, then 
transforms them into graph-structure query statements per 
preset rules. Based on these, the model locates corresponding 
nodes in the graph database, filters qualified results, sorts them 
by relevance, and prioritizes presenting the most valuable 
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findings to conservators, enabling quick and accurate 
information acquisition (Figure 4). 

 

Figure 4. AI realizes the retrieval of Wall paintings deterioration 
graph-structured database. 

Based on the above technical roadmap, we have developed a 
novel data management approach for Mogao Grottoes wall 
paintings conservation decisions. The core research question is 
whether this approach can be effective in practice and address 
the conservation decision-making challenges faced by wall 
paintings preservation. Subsequent validation will integrate 
practical cases and data, starting with graph database-based 
spatial structure modeling of grottoes, conducting cave 
correlation analysis via deterioration characteristics, and 
applying AI-graph data integration for associative analysis. 
These steps will verify the new approach’s effectiveness and 
feasibility while exploring its potential in wall paintings 
conservation. This not only provides a scientific basis for 
subsequent conservation planning decisions but also enhances 
the overall level of Mogao wall paintings conservation, driving 
it toward more efficient and scientific development. 

3. Results 

3.1 Constructing the Spatial Structure Relationships of 
Caves with a Graph Database 

We adopted Neo4j as the platform to construct graph-structured 
data. Neo4j enables high-performance processing of complex 
relationships, and its Cypher query language streamlines data 
operations, effectively representing cave-related data to 
facilitate wall paintings deterioration analysis. In the 
conservation of cave wall paintings, constructing grotto spatial 
structures via graph databases is crucial for accurately assessing 
deterioration status. The cave space is partitioned, with different 
wall paintings–bearing areas modeled as nodes in the graph 
database. Each node records detailed attribute information: 
deterioration type, location, severity, progression trend, and 
repair history of the corresponding area. 
 
Spatial relationships between deterioration areas (e.g., similar 
progression and severity in adjacent caves, or potential 
transmission due to structural interconnections) are represented 
by edges in the graph database. Edges also reflect whether 
deterioration damage in lower-level cave wall paintings 

correlates with groundwater rise and migration. With the 
constructed graph structure, spatial correlations of cave wall 
paintings deterioration are readily apparent. Researchers can 
leverage the graph database’s query and analysis functions to 
quickly identify inter-deterioration relationships. We selected 
Cave 26 and its adjacent areas of Mogao Grottoes to construct 
the graph structure (Figure 5). 

 
Figure 5. Cave spatial structure graph data schematic. 

3.2 Cave Correlation Analysis Based on Deterioration 
Characteristics 

Leveraging the established graph database, we can deeply 
explore potential connections between cave deteriorations. 
Through accurate deterioration data retrieval, close links 
between deterioration in adjacent caves become discernible. 
Moisture is a primary factor driving wall paintings deterioration 
in Mogao Grottoes. For instance, efflorescence and 
disintegration damage were identified on the north and south 
walls of Cave 26’s main chamber.  

 
Figure 6. Efflorescence and disintegration on the south wall of 

the main chamber of cave 26 of Mogao grottoes. 

When querying the graph database, the system swiftly locks 
onto cave nodes with recorded deterioration. By exploiting 
spatial relationships encoded in node edges, we efficiently trace 
adjacent cave nodes in the graph. Analyzing deterioration 
attributes of these nodes helps identify whether similar causes 
exist or if issues arise from spatial conduction and structural 
interactions. Taking Cave 26 as a case study, we searched for 
deterioration associated with adjacent caves. Graph database 
association analysis revealed that three adjacent caves (25, 27, 
28) exhibited salt efflorescence and disintegration. Further 
inspection of cave wall deterioration distribution showed Cave 
26 has 4 main chamber walls, 3 anterior chamber walls, and 1 
Yongdao wall. Notably, Cave 27—adjacent to Cave 26’s main 
chamber south wall—lacks north wall deterioration in its main 
chamber. This suggests Cave 26 experiences greater humidity 
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fluctuations and water accumulation, likely due to being an 
open cave (affected by tourist-exhaled moisture), whereas Cave 
27 is a closed cave with a stable environment (Figure 7). 

 
Figure 7. Search for deterioration in Cave 26 through the graph 

database. 

Mogao Grottoes also presents special cases: during rainy days, 
upper cliff cave wall paintings suffer water seepage damage. 
The graph database can search for similar water-induced 
deterioration in surrounding caves. By comparing deterioration 
attributes of adjacent nodes, we determine if deterioration has 
spread. For example, if multiple adjacent caves show varying 
degrees of ceiling moisture or cliff detachment—spatially 
aligned with a rainwater leakage point—it indicates the seepage 
area affects surrounding caves, necessitating timely regional 
conservation measures to prevent deterioration spread. This 
graph database–based deterioration correlation analysis 
provides a comprehensive decision-making foundation for cave 
wall paintings conservation, enabling efficient identification of 
deterioration transmission paths and proactive risk warning for 
adjacent caves. 

3.3 Application of Association Analysis Combining AI with 
Graph Data 

In the research of wall paintings conservation in Mogao 
Grottoes, the combination of AI and graph database provides 
key support for wall paintings deterioration research and 
conservation decision-making. Graph database organizes data 
via nodes and edges, intuitively associating various information 
and defining spatio-temporal relationships through edge 
attributes. Natural language queries enable users to convert 
queries into executable graph database statements, ensuring 
quick and accurate information retrieval. Compared with the 
traditional approach of writing long, complex query statements, 
they offer obvious advantages. This combination also facilitates 
deep mining of latent information behind the data. 
 
The “Cave Wall Painting Deterioration Assessment System” we 
designed is a comprehensive tool for evaluating the 
deterioration status of cave wall paintings. The system features 
a natural language query panel allowing users to input questions; 
upon submission, the system processes the query and generates 
corresponding Cypher statements, which are displayed in the 
Cypher query panel. A graph visualization window intuitively 
presents the data structure, while a node statistics panel 
provides key metrics such as the total number of caves, types of 

deterioration, total number of data records, and monitoring time 
range. The query results panel shows detailed data outputs and 
includes a download function for saving results. In addition, the 
system incorporates an ECharts-based deterioration trend chart 
module, which, based on query results, tracks changes in wall 
painting conditions over time by deterioration type (Figure 8). 

 
Figure 8. Schematic diagram of the functional module layout of 
the cave wall painting deterioration assessment system. 

For instance, when identifying caves with deterioration in 
expansion, the AI system first mines graph - structured data. It 
then parses time - series statistics (covering attributes like type 
and quantity) of deterioration within individual caves, enabling 
accurate counting of each deterioration type’s occurrences from 
2010 to 2024. Through this analysis, it identifies that 7 
deterioration types across 4 caves (Nos. 13, 15, 16, and 85) 
show increasing trends (Figure 9).  Cave 13 has the fewest types 
of deterioration, with only flaking showing a growth trend from 
2019 to 2024. In contrast, Cave 15 has 5 types of deterioration, 
including Fissure, Mildew, Shedding, deterioration, and paint 
loss, all of which are on an upward trend, especially paint loss, 
which rises sharply after 2020. Cave 16 has four types of 
deterioration, all demonstrating an increasing pattern from 2021 
to 2024. For Cave 85, from 2010 to 2011, both types 
(deterioration and flaking) exhibit a rising trend, then 
experience a decline, and maintain relatively stable levels 
afterward. Such fluctuations reflect the dynamic nature of the 
deterioration process and highlight the need for continuous 
monitoring to capture these changes accurately. This granular 
data visualization tracks deterioration records across types and 
caves over time, demonstrating the precision of AI - driven long 
- term heritage condition monitoring. 

 
Figure 9. Retrieval results of increased cave deterioration. 

Similarly, when querying for caves with wall paintings 
deterioration and detachment that haven’t been repaired, the 
natural language processing module analyzes the query and 
converts it into a graph database statement. The AI model then 
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performs a precise search in the graph-structured database, 
swiftly identifying and retrieving relevant nodes (e.g., cave 
numbers, deterioration locations) and edges (e.g., spatial 
adjacency relationships). Results are ranked by relevance, 
enabling efficient information extraction. The AI system rapidly 
retrieves structured data, including cave number, deterioration 
type, location, condition descriptions, and repair status, and the 
visualization uses color coding (green for repaired, red for 
unrepaired) to distinguish status. The system systematically 
quantified the area changes and repair statistics of two types 
(e.g., deterioration and detachment) in 11 caves from 2017 to 
2024 (Figure 8). 

 

Figure 10. Retrieval results of caves with deterioration and 
detachment without restoration. 

The statistical results reveal distinct repair progress across 
different caves (Figure 10). For Cave 13, the total deterioration 
area stands at 2.40 m², with 1.60 m² remaining unrepaired, 
indicating that targeted restoration efforts have effectively 
reduced the damaged area. In contrast, Cave 16 presents a more 
pressing scenario: the total area affected by deterioration and 
detachment reaches 76.68 m², yet only 2 m² has been repaired to 
date. This significant gap between the extent of damage and 
completed restoration highlights the urgency of prioritizing this 
cave in future conservation plans. Such granular data on repair 
status and area changes not only clarifies the current state of 
each cave’s preservation but also provides concrete evidence for 
allocating resources, scheduling restoration tasks, and 
evaluating the efficiency of past interventions, thereby 
strengthening data-driven decision-making in long-term 
conservation strategies. 

3.4 Data Validation and Reliability Analysis 

To validate the accuracy of the system’s analysis results, we 
compared manually verified Excel baseline data with the 
system’s output (Figure 11). In the validation of 1,311 
deterioration records from 20 sampled caves, the statistics on 
deterioration development trends showed that manual 
comparison of deterioration records across different years for 
each cave took approximately 3 hours, while the system 
completed full-volume data calculation in only 3-5 seconds. 
Taking the data of Cave 15 as an example, the statistical results 
of its deterioration types were completely consistent with the 
system output. In the analysis of deterioration repair status, 
manual counting of quantities alone required 0.7 hours, and if 
area change analysis was involved, it took 10 hours; however, 
the system generated a multi-dimensional statistical report 
including area fluctuations within 5-10 seconds. Taking the data 
of Cave 16 as an example, the area evolution data of its 
deterioration fully matched the manual verification results. 
Experimental data indicate that the system has met the expected 
objectives in both data processing efficiency and statistical 
accuracy, achieving an efficiency improvement of over 3 orders 

of magnitude compared to traditional manual analysis, and 
achieving an intelligent leap in cultural heritage conservation 
data management. 

 
Figure 11. The manual verification results take Cave 15 

deterioration increase and Cave 16 deterioration repair as 
examples. 

Leveraging AI and graph databases enables multi-dimensional 
analysis of Mogao Grottoes wall paintings conservation data. 
Spatially, quantitative data is derived from cave-deterioration 
location node relationships; temporally, data across periods is 
analyzed to understand deterioration trends, predict 
development, and adjust conservation strategies promptly for 
long-term mural protection. Through case studies and data 
analysis, the feasibility and effectiveness of integrating graph-
structured data with AI models in Mogao wall paintings 
conservation data management are validated. 

4. Conclusions 

This study addresses data management challenges in the 
conservation survey of Mogao Grottoes wall paintings by 
proposing an innovative approach integrating graph data 
structures with large AI models, effectively overcoming 
bottlenecks in traditional data management and analysis to 
establish a new paradigm for digital cultural heritage 
conservation.  
 
Technically, AI tools play a crucial role in extracting and 
structuring multi-source data, while graph data structures model 
caves, walls, and deteriorations as nodes with spatio-temporal 
edges, enhancing data management efficiency. The synergy of 
graph data and AI enables multidimensional analysis of wall 
paintings deterioration information. In terms of application 
value, this approach improves the accuracy of conservation 
decision-making, allowing conservators to access deterioration 
information promptly and prioritize interventions in areas with 
rapid progression. It also sets a benchmark for data-driven 
management in cultural heritage, fostering digital 
transformation in the field.  
 
However, we have also found that the non-uniformity of data 
record formats and the lack of detailed data have a significant 
impact on the analysis. In future verification work, we must 
standardize the requirements for records. Moreover, this 
approach still has room for improvement, especially in 
enhancing the retrieval efficiency of complex queries. Future 
research will focus on optimizing natural language processing 
models, integrating technologies such as image recognition and 
sensor monitoring, and promoting interdisciplinary 
collaboration to further advance the conservation and long-term 
preservation of cultural heritage. 
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