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Abstract 
 
In recent years, the increasing complexity of spatial data related to landscape heritage and urban legacies has led to a growing focus in 
research on enhancing the efficiency of management processes while simultaneously increasing their level of automation. In this 
context, a highly relevant solution is the use of so-called artificial intelligence, and more specifically, predictive models generated 
through Deep Learning techniques. However, a commonly observed critical issue concerns the limited generalisation capability of 
these models, which often fail to accurately recognise features in datasets that differ from those used during the training phase. In the 
present contribution, starting from a predictive model trained on airborne LiDAR point clouds belonging to a regional dataset (Sardinia, 
Italy), a transfer learning approach is proposed using new data (derived from the ISPRS benchmark dataset for semantic segmentation 
of Hessigheim – H3D) to improve the generalisation capabilities of the model. In order to assess the suitability of the proposed transfer 
learning strategy, a comparison between the classification performed by the original predictive model and the fine-tuned predictive 
model has been performed. Furthermore, the evaluation metrics have been calculated, evaluated, and discussed to quantitatively assess 
the improvement in terms of results, performance, and absolute gain between the different models tested. The proposed workflow 
supports scalable landscape and urban heritage monitoring by reducing human intervention in data management workflows while 
maintaining semantic consistency in available airborne laser scanner (ALS) data processing. While the contribution presents class 
limitations due to the constraints of the training data used for the first predictive model, the study demonstrates how transfer learning 
strategies can enhance the performance of semantic segmentation models when handling existing sparse data. This aligns well with 
scientific community efforts toward automated, efficient, and scalable heritage monitoring and documentation using remote sensing 
techniques. 
 
 

1. Introduction 

In today’s society, the protection and conservation of cultural 
heritage (CH) has reached a level of complexity that is primarily 
conceptual, as it involves a wide range of different and disparate 
contexts and issues.  
Since the post-war period of the last century, the recognition of 
CH as a key element of identity and collective memory, both 
local and global, has become more stable and substantial. This 
has been accompanied by concepts as the interdependence 
between tangible and intangible heritage (Bouhenaki, 2003), a 
growing and more mature awareness of anthropic and natural risk 
(U.N. Disaster Risk Reduction; Sendai Framework 2015, 
COPERNICUS), the promotion of sustainable tourism 
(UNESCO 2017), and the recognition of heritage as an economic 
driver for societies (UN, SDG11). These developments represent 
some of the most recent statements and concepts underlying the 
role of CH protection today. 
Landscape heritage, or historical landscape, displays the 
strongest and most significant connections within the territory, as 
the relationship between human settlements and their placement 
on the territory follows recurring and recognisable patterns 
(Chapman, 2006). 
In this sense, remote sensing (RS) methods, in their 
extraordinarily varied forms, have provided a significant non-
invasive contribution to the documentation of landscape heritage 
(Forte & Campana, 2016). Following technological innovations, 
these methods have been able to offer different distance ranges 
of aerial and spaceborne acquisitions, using both active and 
passive sensors based on imaging and distance measurements, 

and operate across various bands of the electromagnetic 
spectrum, enabling analyses in both the visible and 
multi/hyperspectral domains. 
The monitoring and protection of cultural heritage landscapes, 
including historic urban and landscape heritage sites, are 
essential for safeguarding cultural identity and ensuring 
sustainable territorial management. Heritage documentation 
often requires scalable, repeatable, and cost-effective methods to 
detect changes such as vegetation encroachment either on 
archaeological sites or urban centers, illegal land use 
transformations, and erosion processes threatening 
archaeological landscapes. In this context, airborne laser scanner 
(ALS) offers a practical tool for large-scale 3D documentation, 
but the effective use of these data in heritage management 
requires automated, robust semantic segmentation to minimize 
manual post-processing and enhance data structuring within 
institutional available data workflows. 
In particular, the presented research focuses on ALS point clouds 
and the subsequent Digital Height Models (DHMs), which have 
played a decisive role in cartographic production and various 
fields of environmental studies investigating issues related to 
spatial and radiometric resolution, echo return information, 
density and, obviously, the possibility of boosting automation in 
analysis processes for deriving structured information (Mallet & 
Bretar, 2009). 
The use of aerial platforms combined with full-waveform 
LiDAR, along with the use of Global Navigation Satellite 
Systems (GNSS) and Inertial Measurement Units (IMUs) (Shan 
& Toth, 2018) for the reconstruction of sensor trajectories and 
consequent georeferencing, has significantly improved the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-M-2-2025 
30th CIPA Symposium “Heritage Conservation from Bits:  

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-M-2-2025-47-2025 | © Author(s) 2025. CC BY 4.0 License.

 
47



 

productivity of 3D data acquisition. This has enabled highly 
accurate 3D mapping for a wide range of purposes, for urban 
modeling (Nys et al., 2020), but also for microtopographic 
analyses that are particularly significant for mapping landscape 
heritage. 
Among the critical issues arising from this development in the 
field of geo-information, particularly concerning multi-scale and 
multi-sensor approaches, one of the most significant challenges 
is undoubtedly the management of big spatial data. This issue 
becomes even more complex when considered from a multi-
temporal collection perspective that has developed in parallel, 
posing significant challenges for common Geo-ICT 
infrastructures, which must manage these data with increasing 
effectiveness (Van Oosterom et al. 2015). 
On the other hand, automated and integrated data structuring 
approaches aimed at efficiently deriving Digital Terrain Models 
(DTMs) and pursuing the automatic segmentation and 
classification of 3D data represent another crucial study scenario, 
as demonstrated by the significant development of the related 
literature (Chen et al., 2017). 
Additionally, managing big spatial data is pivotal for applications 
ranging from city planning to environmental monitoring to 
autonomous navigation (Li et al., 2016). However, the volume of 
data, as well as the complexity of the information, requires 
effective data labelling automation, which is a key step towards 
developing AI-based analytics systems. In particular, semantic 
segmentation models for 3D point clouds have become essential 
(Matrone et al., 2020), by using neural networks (NNs) such as 
PointNet/PointNet++ (Qi et al., 2017a, 2017b), RandLA-Net (Hu 
et al., 2019), or recent transformer-based models like Point 
Transformer (Robert et al., 2023). Although they have great 
potential, deep learning models (DLMs) are subject to overfitting 
and data uncertainties, particularly driven by the scarcity of 
reference data (Weiss et al., 2016). In this sense, transfer learning 
pipelines are considered extremely crucial since the advent of 
DL, because they allow avoiding training models on new data 
from scratch, minimizing the human operator time in data 
labelling, while still achieving great performances (Pan & Yang, 
2010; Sohail et al., 2025). In fact, in order to augment 
performance and generalisation capabilities, it is possible to first 
train DLMs on larger, related datasets and fine-tune them on 
specific target domains, making it possible to achieve higher 
performance with fewer annotated examples (Iman et al., 2023). 
Finally, aligning with the objectives of the CIPA community 
(CIPA Heritage Documentation), this work explores the potential 
of DLMs and transfer learning strategies to automate and 
optimize the processing of ALS point clouds for landscape and 
urban heritage monitoring. 
 
1.1 Previous research experience and present research aims 

The present contribution falls within this last research sector, 
starting from an extensive previous research experience 
developed by the authors, (Cappellazzo et al., 2024; Cappellazzo, 
2025) , that aimed to automate data structuring by leveraging 3D 
ALS point clouds available from regional spatial data 
infrastructures by applying machine learning (ML) techniques to 
enhance the detection of Sardinia’s coastal landscape heritage, 
which is characterised both by isolated wild landscapes (Figure 
1) and by urban legacies. Documenting and preserving isolated 
coastal landscapes and urban legacies is crucial for maintaining 
cultural identity, fostering community belonging, and promoting 
sustainable development. In this sense, throughout participatory 
mapping, documentation, and data structuring tools, cities can 
safeguard their layered memories while continuously adapting to 
contemporary needs. The present contribution methodological 
investigation is based on the analysis and study of foundational 

knowledge within the heritage conservation disciplines. 
Specifically, the present research has examined the 
multidisciplinary approaches developed by research groups of 
the University of Cagliari (Giannattasio et al., 2020; Fiorino et 
al., 2021). The focus of this research is to document and 
investigate Sardinian construction techniques, since architectural 
elements within the historic Sardinian landscape are notably 
diverse, both chronologically and in terms of typology and 
construction methods. Starting from this premise, the restoration 
research group from Cagliari has developed a series of in-depth 
studies focused on the knowledge and recognition of the local 
built heritage, addressing interdisciplinary methodologies aimed 
at chronological and typological analysis to establish effective 
tools for the conservation of this heritage. The categories of 
assets investigated are grouped into four macro-categories, 
starting with military defensive architecture, religious 
architecture, civil and vernacular architecture, and historical 
centers (Giannattasio et al., 2020). In this scenario, the topic of 
historical defensive architectures and military landscapes of 
Sardinia (Fiorino et al., 2021) has been specifically addressed by 
issuing a shared methodology. In this sense, the University of 
Cagliari's research requires exploring the geospatial relations 
between military architecture with its construction techniques, 
the actual and historic geographic and sociopolitical context, and 
the morpho-typological characteristics, by structuring a 
geographic database. This has been made necessary because of 
the slow and continuous process of the defensive infrastructure 
development of the island, driven by the evolving needs of the 
defensive functions over the centuries. 
 

 
Figure 1. Sevo Tower. Cabras, Italy (cr. fortificazioni.net). 
 
For these reasons, the previous research from the authors 
explored the development of a predictive deep learning (DL) 
method for the automatic segmentation of DTMs, aimed at 
classifying the coastal military heritage. However, this method 
required further fine-tuning and enhancement to apply to the 
landscape heritage's scope. 
Certainly, many landscape heritage sites, both in Sardinia and 
elsewhere, can be extensively studied, and in many cases, their 
history, transformation, and cultural values are known and well-
documented. The final goal of this kind of study is not to generate 
small-scale models of specific samples of widespread or scattered 
landscape heritage. This is especially true considering that 3D 
models, acquired through terrestrial methods, can provide denser 
and more accurate documentation products.  Rather, the research 
aims to develop the potential for automatic and rapid archiving at 
the scale of regional cartography, aiming to improve the 
integration of public and widely distributed databases and 
provide public administrations with sustainable and innovative 
tools for comprehensive territorial and landscape management. 
In the specific case of the presented research, the goal is to 
propose a method to enhance the effectiveness of these processes. 
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Starting from the predictive model trained during the 
aforementioned research activities (Cappellazzo et al. 2024; 
Cappellazzo 2025), a transfer learning approach was tested using 
new data in order to evaluate how such a strategy could improve 
the adaptability of predictive models while also increasing their 
flexibility and efficiency. 
 

2. Data and methodology 

2.1 Primary data 

The present contribution is thus focused on transfer learning 
pipelines starting from a previously trained semantic 
segmentation model, DLM1 (Cappellazzo et al. 2024).  
The DLM1 model was trained using RandLA-Net (Hu et al., 
2019) architecture and validated on an airborne LiDAR dataset 
pertaining to the area of Cagliari (2 pts/m²) and tested on another 
dataset representing Alghero area (10 pts/m²). These datasets 
belong to a regional dataset (Sardinia Region) derived from two 
different airborne LiDAR surveys carried out in 2008, while 
Cagliari data were acquired with an ALTM Gemini sensor at a 
1400 m average above-ground level (AGL), Alghero data 
acquisition involved a Riegl LMS-Q560 full-waveform sensor, 
operating at a 500 m AGL. Given that the datasets have been 
characterized by low densities, data uncertainties, and a lack of 
related reflectance information, the preparation of training data 
has involved the development of a satellite imagery data-fusion 
approach combined with an unsupervised filtering algorithm. 
As described in (Cappellazzo et al. 2024), a sample of the semi-
automatic annotated data (≈ 2.7 km2) has been used for the 
training of a DLM, splitting the sample into 78% for the training 
and 22% for validation, applying a five-class semantic 
segmentation scheme (never classified; ground; high vegetation; 
building; water). Validation of the model achieved a macro-
average of 0.95 accuracy, 0.80 precision, 0.73 recall, and 0.74 
F1-score; however, slight overfitting, even if the results across 
four independent test areas reached 0.96 accuracy, 0.89 precision, 
0.77 recall, and 0.80 F1-score. 
Validation of the model achieved a macro-average of 0.95 
accuracy, 0.80 precision, 0.73 recall, and 0.74 F1-score; 
however, slight overfitting, even if the results across four 
independent test areas reached 0.96 accuracy, 0.89 precision, 
0.77 recall, and 0.80 F1-score. 
The model demonstrated strong transferability across different 
acquisition densities and territorial morphologies. However, this 
has been proved to be effective in urban areas with similar 
morphologies, and the model failed to demonstrate generalisation 
capabilities in extremely different contexts. 
In fact, in the present contribution, the ISPRS benchmark dataset 
for semantic segmentation of Hessigheim (H3D) (Kölle et al., 
2018) was used to specifically “stress-test” the DLM1 on 
different data. H3D benchmark consists of high-density LiDAR 
data (800 pts/m2) originating from UAS-based LiDAR and 
digital photogrammetry. Due to the high density of the point 
clouds, along with high-resolution RGB data (2-3 cm GSD), it is 
possible to estimate high-granularity details in the urban scene. 
The specific aim of H3D is to provide properly labelled data sets, 
useful to test and improve point cloud semantic segmentation 
methods for geospatial applications. Moreover, one of the aims 
of the WG II/2 was also to deal with data semantics, providing a 
class scheme coherent with the resolution of data.  
A significant difference between the two datasets is that the 
regional dataset from the Sardinia Region includes points 
labelled as belonging to the "water" class during the annotation 
phase preceding the training, whereas this class is absent in the 
Hessigheim dataset. Consequently, during the experimentation 

carried out in the present paper, the "water" class was excluded 
and not considered. 
Still, as shown in Figure 2, where two aerial images of Cagliari 
(where the first predictive model was trained) and Hessigheim 
are shown, the two areas exhibit substantial differences in 
morphology, urban fabric, and territorial context. Within this 
framework, as further discussed in Section 2.2, the DLM1 model 
encountered features that are significantly different from those 
encountered during its original training phase. 
 

 
Figure 2. Comparison between the Cagliari city centre (a) and the 
Hessigheim (b) settlements' morphologies. From the aerial 
photographs, it is possible to observe the important differences 
between the two urban configurations in density and construction 
typologies. This difference reflects the available digital data. 
 
The H3D dataset thus served as a complementary support for the 
verification of the original DLM1 performances, aligning with 
the objectives of scalable heritage documentation. The Sardinia 
ALS dataset from which the original backbone model has been 
trained represents the typical situation of regional available 
datasets, characterised by low-density airborne data and limited 
possibilities for class annotations, reflecting the constraints over 
data resolution. Yet, the ISPRS H3D benchmark significantly 
differs in terms of urban morphology and point density and is 
necessary for issuing a stress-test of the generalisation capacity 
of the predictive model and evaluating transfer learning strategies 
under different resolution conditions. The complementarity of 
the two datasets is an essential condition for a robust assessment 
of model adaptability, while acknowledging at the same time the 
differences in dataset characteristics and their implications for 
urban and landscape scale heritage data processing workflows. 
 
2.2 Class remapping and subsampling strategies 

In order to carry out the fine-tuning process using the H3D 
benchmark dataset, starting from the predictive model trained on 
the Sardinian case study, the class labels were remapped. This 
step is necessary because the fine-tuning data must be labelled 
according to the class scheme of the predictive model, allowing 
the model to learn effectively from the new input data. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-M-2-2025 
30th CIPA Symposium “Heritage Conservation from Bits:  

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-M-2-2025-47-2025 | © Author(s) 2025. CC BY 4.0 License.

 
49



 

Table 1 shows the class remapping between the Hessigheim 3D 
data labels and the scheme used to annotate the original semantic 
segmentation model, as well as the corresponding class 
descriptions. 
 

Original 
class Description Target 

class Description 

C00 Low 
Vegetation C02 Ground 

C01 Impervious 
Surface C02 Ground 

C02 Vehicle C00 Never 
Classified 

C03 Urban 
Furniture C00 Never 

Classified 

C04 Roof C06 Building 

C05 Façade C06 Building 

C06 Shrub C00 Never 
Classified 

C07 Tree C05 High 
Vegetation 

C08 Soil/Gravel C02 Ground 

C09 Vertical 
Surface C00 Never 

Classified 
Table 1. Hessigheim 3D data class schema remapping. 
The point clouds from the Sardinian dataset, used to train the 
original predictive model, were characterised by a density of 2 
pts/m2. However, to evaluate the effectiveness of the fine-tuning 
strategy and the adaptability of the resulting model, multiple 
training experiments were carried out using data from the H3D 
dataset subsampled at varying densities. 
Specifically, the first subsampling was performed to achieve the 
same density of the Sardinian point clouds; furthermore, two 
additional subsampled datasets were considered with a point 
spacing of 0.5 m (resulting in a point cloud with an average 
density of 10 pts/m2) and 0.15 m (resulting in a point cloud with 
an average density of 50 pts/m2). 
The principal characteristics of this subsampling process (point 
spacing and average density) are reported in Table 2. 
 

SS instance Point spacing [m] Average density 
SS1 no subsampling ≈ 800 pts/m2 
SS2 1 ≈ 2 pts/m2 
SS3 0.5 ≈ 10 pts/m2 
SS4 0.15 ≈ 50 pts/m2 

Table 2. Hessigheim 3D data subsampling strategies (SS). 

The choice made by the authors of subsampling data reflects 
practical and real-world situations. In fact, low resolutions (2-10 
pts/m2, lack of data, and data uncertainties are often typical of 
available regional remote sensing airborne datasets used by 
administrations for mapping and territorial monitoring. While the 
previous study (Cappellazzo, 2024) was focused on exploiting 
regional available data also for landscape-scale heritage 
monitoring, the present contribution also focuses on higher 
resolutions (>50 pts/m²) to simulate tailored dense acquisitions 
that can be employed for specific monitoring of sensitive heritage 
areas requiring more detailed analysis. In this sense, this model 
could be considered a preliminary model for point cloud semantic 
segmentation, which could prepare raw data for a more detailed 

manual annotation, and consequently for the training of a tailored 
model. 
2.3 Classification tests with the original DLM 

The predictive model previously trained on data from Sardinia 
was applied to classify the point clouds belonging to the H3D 
dataset and assess its generalisation capability. The test was 
conducted on the original resolution data (SS1) and subsampled 
point clouds characterised by different densities (SS2, SS3, SS4), 
as visible from Figure 3. 
From the visual comparison, it is clear how the model failed to 
achieve a correct classification of the input data, empirically 
demonstrating the supposed overfitting phenomenon observed 
during the training process. In fact, although the good results 
were obtained with an external Sardinian test dataset, the urban 
conformation of the two case studies presents important 
differences, as also shown in Figure 2. 
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Figure 3. Ground truth/predictions comparison of the semantic 
segmentation model trained on the Sardinia dataset, tested on the 
validation set of the Hessigheim benchmark (H3D) (Kölle et al., 
2021). 
 
From the visual comparison, it is clear how the model failed to 
achieve a correct classification of the input data, empirically 
demonstrating the supposed overfitting phenomenon observed 
during the training process. In fact, although the good results 
were obtained with an external Sardinian test dataset, the urban 
conformation of the two case studies presents important 
differences, as also shown in Figure 2. 
 
The evaluation metrics – calculated from the true/false 
positives/negatives ratio reported in the Confusion Matrix – are 
reported in Table 3 (classification of SS1 dataset), Table 4 
(classification of SS2 dataset), Table 5 (classification of SS3 
dataset), and Table 6 (classification of SS4 dataset). 
 

DLM1 on 
Validation SS1 Accuracy Precision Recall F1 

Never Classified 0.90 0.24 0.00 0.00 
Ground 0.83 0.77 0.90 0.83 

High vegetation 0.84 0.38 0.81 0.52 
Building 0.78 0.71 0.49 0.58 

Macro Average 0.83 0.53 0.55 0.48 
Table 3. Evaluation metrics achieved on the validation dataset 
using the predictive model trained from the Sardinia point cloud 
(full resolution data). 
 
 

DLM1 on 
Validation SS2 Accuracy Precision Recall F1 

Never Classified 0.83 0.27 0.00 0.00 
Ground 0.78 0.61 0.88 0.72 

High vegetation 0.67 0.41 0.86 0.56 
Building 0.72 0.34 0.04 0.08 

Macro Average 0.75 0.41 0.45 0.34 
Table 4. Evaluation metrics achieved on the validation dataset 
using the predictive model trained from the Sardinia point cloud 
(subsampled data – 2 pts/m2). 
 

DLM1 on 
Validation SS3 Accuracy Precision Recall F1 

Never Classified 0.82 0.00 0.00 0.00 
Ground 0.77 0.59 0.86 0.70 

High vegetation 0.69 0.47 0.86 0.60 
Building 0.73 0.32 0.06 0.11 

Macro Average 0.76 0.34 0.45 0.35 
Table 5. Evaluation metrics achieved on the validation dataset 
using the predictive model trained from the Sardinia point cloud 
(subsampled data – 10 pts/m2). 
 

DLM1 on 
Validation SS4 Accuracy Precision Recall F1 

Never Classified 0.82 0.33 0.00 0.00 
Ground 0.77 0.59 0.85 0.70 

High vegetation 0.71 0.49 0.87 0.63 
Building 0.76 0.38 0.09 0.15 

Macro Average 0.76 0.45 0.45 0.37 
Table 6. Evaluation metrics achieved on the validation dataset 
using the predictive model trained from the Sardinia point cloud 
(subsampled data – 50 pts/m2). 
 
As expected, the results obtained from this preliminary 
classification highlight a low performance, indicating a limited 

capability of the predictive model to identify the classes of the 
analysed data correctly. The class least affected by the 
differences between the training data and the classified data is the 
ground class, across all four tests performed. This is the only 
class that consistently shows sufficient values regarding 
Precision, Recall, and, consequently, F1-score. 
On the other hand, the class that shows the highest accuracy in 
all four cases is the Never Classified class, but this is due to the 
imbalance between the high value of True Negatives and the very 
low number of correctly identified True Positives. This aspect is 
clearly highlighted by the extremely low values of Precision and 
Recall. 
The second class (after Ground) to show the best performance is 
High Vegetation, despite the extremely low Precision value 
across all four cases. This characteristic highlights a tendency of 
the model to fail to correctly identify many of the positive 
elements belonging to this class, resulting in a high number of 
false negatives. In contrast, the extremely low Recall value for 
the Building class underlines how this specific class is generally 
underpredicted. 
It is no coincidence that for the Building class, results are 
characterised by very low metrics, given that the urban fabric of 
the two areas considered is extremely different, as evidenced by 
the various building types and the varying roof pitch angles. 
In this case, it is important to underline that the data to be 
classified significantly differs from the training data. In this 
scenario, the used predictive model does not have sufficient 
generalisation capability to make accurate predictions. 
 
2.4 Transfer learning training tests 

Four additional fine-tuning training workflows were developed 
to further evaluate the robustness and adaptability of the semantic 
segmentation predictive models, leveraging the DLM1 as a 
backbone model. The transfer learning test experiments were 
conducted by adopting the four different subsampling strategies 
described in Table 1, applied to the input H3D point clouds. 
The training experiments are resumed in Table 7. 
 

TL instance Class 
Remapping 

Sub 
Sampling 

Block size 
[m] 

TL1 Yes No 100 
TL2 Yes SS1 100 
TL3 Yes SS2 100 
TL4 Yes SS3 100 

Table 7. Transfer learning (TL) test strategies. 

Each training process maintained the same NN of the original 
model (RandLA-Net), and training data block extension, while 
modifying only the sampling stage prior to feature extraction. 
Specifically, the input point clouds were independently 
processed using a distance-based uniform sampling. In each case, 
the same class schema and some common hyperparameters 
(batch size of 10 blocks, a starting learning rate of 0.001, and a 
cross-entropy loss function) were adopted. The learning rate 
optimiser was employed throughout, and training was conducted 
over a maximum of 50 epochs for each model with early stopping 
criteria based on F1 and best validation loss. In this sense, block 
dimensions and training data preparation are strongly influenced 
by the backbone model, while hyperparameters such as learning 
rate, batch size, and model selection criteria are lessons learned 
from the study of the state-of-the-art previous research 
experiences (Cappellazzo, 2024). 
The choice to explore four different subsampling strategies was 
mainly driven by the need to understand not just how they affect 
overall segmentation accuracy, but also how sensitive the models 
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are to small variations in data regarding the point clouds 
topology, the geometric details, and finer structures within the 
point clouds. The distance-based sampling offered a 
straightforward test of how imposing a regular structure might 
impact model performance, even though it risks losing finer 
detail. All training experiments were run on an NVIDIA RTX 
3090 GPU, which provided enough memory to handle large 
spatial tiles efficiently without forcing memory consumption. 
 

3. Results and discussion 

At the end of the fine-tuning procedures described in the previous 
section, the Validation Dataset for TL1, TL2, TL3, and TL4 was 
classified using the fine-tuned predictive models in order to 
generate the Confusion Matrix, with the aim of assessing the 
effectiveness of the newly trained model. Consequently, the 
evaluation metrics (Accuracy, Precision, Recall, and F1) were 
calculated. The evaluation metrics related to each training are 
reported in Tables 8, 9, 10, and 11. In this case, it is evident that 
the order of magnitude of the performance exhibited by the 
models after fine-tuning is significantly superior to that of the 
previous model. 
 

TL1 on 
Validation SS1 Accuracy Precision Recall F1 

Never Classified 0.91 0.56 0.44 0.49 
Ground 0.91 0.86 0.97 0.91 

High vegetation 0.96 0.83 0.78 0.80 
Building 0.92 0.91 0.82 0.86 

Macro Average 0.92 0.79 0.75 0.77 
Table 8. Evaluation metrics achieved on the validation dataset 
(fine-tuning, full-resolution data). 
 

TL2 on 
Validation SS2 Accuracy Precision Recall F1 

Never Classified 0.84 0.54 0.45 0.49 
Ground 0.90 0.86 0.82 0.84 

High vegetation 0.81 0.57 0.94 0.71 
Building 0.85 0.90 0.50 0.64 

Macro Average 0.85 0.72 0.68 0.67 
Table 9. Evaluation metrics achieved on the validation dataset 
(fine tuning, subsampled data – 10 pts/m2). 
 

TL3 on 
Validation SS3 Accuracy Precision Recall F1 

Never Classified 0.88 0.73 0.51 0.60 
Ground 0.94 0.90 0.92 0.91 

High vegetation 0.93 0.84 0.94 0.89 
Building 0.93 0.84 0.88 0.86 

Macro Average 0.92 0.83 0.81 0.82 
Table 10. Evaluation metrics achieved on the validation dataset 

(fine tuning, subsampled data – 2 pts/m2). 
 

TL4 on 
Validation SS4 Accuracy Precision Recall F1 

Never Classified 0.88 0.66 0.66 0.66 
Ground 0.94 0.89 0.93 0.91 

High vegetation 0.94 0.89 0.90 0.90 
Building 0.95 0.92 0.84 0.88 

Macro Average 0.93 0.84 0.83 0.83 
Table 11. Evaluation metrics achieved on the validation dataset 
(fine tuning, subsampled data – 50 pts/m2). 
 
The results obtained from the classification using the original 
predictive model were compared with those achieved by the 
model fine-tuned on the H3D dataset. In particular, Tables 12, 

13, 14 and 15 report the percentage differences in evaluation 
metrics, highlighting a significant performance improvement for 
 

 

 

 
 
Figure 4. Prediction results of the semantic segmentation models 
were trained using the DLM1 as the backbone, tested on the 
validation dataset of H3D (Kölle et al., 2021). 
 
the second model, which learned the dataset-specific features 
from the fine-tuning data in order to assign each element to its 
corresponding class correctly. Such performance was clearly 
unachievable with the previous model, due to the significant 
morphological and typological differences between the elements 
of the H3D dataset and those used for training the Sardinian 
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model, caused by the extremely different characteristics of the 
two urban fabrics considered. 
 
 

TL1 absolute 
gain 

Evaluation metric percentage 
differences 

(original model/fine-tuned model) 
Accuracy Precision Recall F1 

Never Classified +1% +32% +44% +49% 
Ground +8% +9% +7% +8% 

High vegetation +12% +45% -3% +29% 
Building +14% +20% +33% +28% 

Macro Average +9% +26% +20% +29% 
Table 12. Comparison between the evaluation metrics achieved 
from the original model and the fine-tuned model, evidencing a 
significant improvement in terms of performance (TL1). 
 

TL2 absolute 
gain 

Evaluation metric percentage 
differences 

(original model/fine-tuned model) 
Accuracy Precision Recall F1 

Never Classified +1% +26% +45% +49% 
Ground +12% +25% -6% +12% 

High vegetation +14% +15% +8% +15% 
Building +13% +56% +46% +57% 

Macro Average +10% +31% +23% +33% 
Table 13. Comparison between the evaluation metrics achieved 
from the original model and the fine-tuned model, evidencing a 

significant improvement in terms of performance (TL2). 
 

TL3 absolute 
gain 

Evaluation metric percentage 
differences 

(original model/fine-tuned model) 
Accuracy Precision Recall F1 

Never Classified +6% +73% +51% +60% 
Ground +17% +31% +6% +21% 

High vegetation +24% +37% +8% +28% 
Building +20% +53% +82% +76% 

Macro Average +17% +49% +37% +46% 
Table 14. Comparison between the evaluation metrics achieved 
from the original model and the fine-tuned model, evidencing a 

significant improvement in terms of performance (TL3). 
 

TL4 absolute 
gain 

Evaluation metric percentage 
differences 

(original model/fine-tuned model) 
Accuracy Precision Recall F1 

Never Classified +6% +33% +66% +66% 
Ground +17% +30% +8% +21% 

High vegetation +23% +40% +3% +27% 
Building +19% +54% +75% +73% 

Macro Average +17% +39% +38% +46% 
Table 15. Comparison between the evaluation metrics achieved 
from the original model and the fine-tuned model, evidencing a 

significant improvement in terms of performance (TL4). 
 
From the analysis of the data presented above, it is clear that the 
most significant performance improvements are observed for the 
Building class, which stands out as the class that has benefited 
the most from this transfer learning strategy, with increases in 
terms of performance of up to +56% for Precision (TL2), up to 
82% for Recall (TL3), and up to +76% for F1-score (TL3). 
Overall, all classes show satisfactory metrics, with the exception, 
as expected, of the Never Classified class. However, it still shows 
an increase, compared to the classification performed with the 

previous predictive model, of several percentage points in 
performance, especially in terms of Recall and F1-score. 
One aspect that emerges when looking at the Macro Average of 
the calculated metrics is that, despite the original predictive 
model being trained with point clouds characterised by a density 
of approximately 2 pts/m2, and therefore the dataset being the 
closest to the original one, the most positive performance is 
observed on point clouds with higher density. In particular, 
considering the classes Ground, High Vegetation and Building, 
the dataset with the overall highest metrics are TL3 and TL4 
(characterised by a density of approximately 10 pts/m2 and 50 
pts/m2 respectively). 
This may be attributed to the higher resolution of the data and, 
consequently, to the improved spatial representation of complex 
elements such as buildings, structures, or landscape features. In 
fact, denser point clouds have provided a more effective input for 
the new predictive model that has been generated according to 
the strategies outlined in Section 2.4. In conclusion, the 
improvements in evaluation metrics, achieved after the fine-
tuning, demonstrate that the method can be applied for scalable 
heritage monitoring. In fact, since most of the models achieved 
an F1-score > 0.80 with an absolute gain in the range of 
+30%/+40% on the building class, the models can thus detect 
changes in historic urban fabric with an improved generalisation 
capability, reducing the need for manual post-processing editing 
by human operators. Similarly, the metrics for the vegetation 
class demonstrate the models being able to support the 
monitoring of high-vegetation invasion on archaeological and 
landscape sites, facilitating heritage sites management and 
conservation. 
 

4. Conclusions 

In the scenario of semantic segmentation of point clouds, and 
more specifically considering point clouds used for documenting 
landscape heritage and urban legacy, which represents the final 
goal for the generation of the Sardinian predictive model as stated 
in (Cappellazzo et al. 2024), the potential of fine-tuning strategies 
for transfer learning purposes offers significant opportunities.  In 
fact, the present contribution demonstrated that by systematically 
varying the point cloud resolution within the training data 
preparation stage while keeping the network architecture and 
optimisation parameters constant, it is possible to understand the 
influence of subsampling strategies based on the performance 
and generalisation capabilities of each model. The research was 
aiming to develop a controlled, modular methodology aimed at 
optimising LiDAR data structuring workflows by employing 
transfer learning pipelines. In this sense, the absolute gain in 
performance metrics shown in Tables 12-15 demonstrates the 
reliability of fine-tuning to improve the generalisation 
capabilities of DLMs. 
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