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Abstract 
 
This paper investigates the use of image-based deep learning methods to automate the segmentation and semantic classification of 
point clouds for Heritage Building Information Modelling (HBIM). In response to the limitations of classical machine learning 
approaches such as Random Forests, DBSCAN, and K-Nearest Neighbours, this paper proposes a hybrid pipeline combining 360° 
panoramic imagery with state-of-the-art computer vision models. The proposed solution leverages Meta’s Segment Anything Model 
(SAM) for image-based segmentation and YOLO World for open-vocabulary object classification, with segmentation masks 
reprojected into 3D space to annotate point clouds data of heritage buildings. 
Experiments were conducted on a high-resolution dataset from the Queen’s House, Royal Museums Greenwich. Results show that 
SAM generalises well to equirectangular projections, particularly when applied to synthetic panoramas rendered from point clouds. 
YOLO World enhanced semantic labelling but showed reduced specificity in heritage contexts. The proposed hybrid pipeline 
produced spatially consistent and semantically enriched 3D segments, demonstrating potential for reducing manual labour in HBIM 
workflows. 
Despite challenges related to projection ambiguity, occlusion, and semantic granularity, the research presented in the paper validates 
a novel paradigm for 3D heritage interpretation that fuses visual intelligence with geometric precision. With the results from the 
experiment presented in the paper, a future recommendation incorporating multi-view inputs, depth filtering, and ontology mapping 
is also provided to scale the approach toward practical HBIM adoption. 
 
 

1. Introduction 

Digital workflows are increasingly central to cultural heritage 
documentation and conservation, yet significant bottlenecks 
persist. International frameworks such as UNESCO’s 
Sustainable Development Goals and the UN Urban Agenda 
2030 emphasise the need for innovative technologies to support 
heritage safeguarding (Cotella, 2023). In response, 3D laser 
scanning and photogrammetry are now widely employed to 
record historic buildings, generating dense point clouds. 
However, these datasets remain scattered, disorganised and lack 
semantic richness (Zhao et al., 2023), necessitating substantial 
manual input for meaningful interpretation. 

This paper investigates a novel approach to automated 
segmentation and classification of point clouds for Heritage 
Building Information Modelling (HBIM), leveraging recent 
advances in image-based deep learning. Prior methods using 
classical machine learning such as Random Forests, RANSAC, 
DBSCAN, and K-Nearest Neighbours exhibit limitations in 
scalability, semantic fidelity, and generalisability. These 
constraints highlight the need for more effective techniques to 
reduce manual effort and enhance interpretative value. 
Automated semantic segmentation thus remains a critical 
challenge and bottleneck for HBIM, with implications for 
damage assessment, restoration planning, and beyond. 

This study proposes using 360° panoramic images, derived from 
LiDAR scanner as intermediaries between 2D image 
segmentation and 3D point cloud analysis. It evaluates the 
performance of two foundation models: Meta’s Segment 
Anything Model (SAM) for segmentation, and YOLO World 

for semantic classification. SAM, trained on over a billion 
masks, offers robust zero-shot generalisation, while YOLO 
World enables object detection using natural language labels. 
These models are applied to heritage datasets without the need 
for domain-specific training, enabling direct segmentation of 
architectural elements. Outputs are then reprojected onto the 3D 
point cloud to produce semantically enriched spatial models. 

The methodology is demonstrated using datasets from the 
Queen’s House at Royal Museums Greenwich via a four-stage 
pipeline: (i) segmentation with SAM, (ii) 3D back-projection, 
(iii) testing on real and synthetic panoramas, and (iv) semantic 
labelling using YOLO World. This proof-of-concept 
demonstrates the potential of 2D foundation models to enhance 
HBIM workflows, offering scalable solutions for point cloud 
interpretation, semantic enrichment, and improved 
interoperability across heritage systems. 

The remainder of this paper is structured as follows: Section 2 
reviews recent developments in image-based segmentation and 
AI-assisted heritage modelling. Section 3 synthesises key 
insights from previous classical machine learning experiments. 
Section 4 outlines the dataset and experimental methodology. 
Sections 5 and 6 present and discuss the findings respectively, 
and Section 7 concludes with reflections on limitations and 
future research directions. 
 
 

2. Literature Review 

Advances in deep learning have significantly enhanced image 
segmentation. Early methods based on handcrafted features and 
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clustering algorithms struggled with the visual complexity 
typical of heritage contexts. The advent of Fully Convolutional 
Networks enabled end-to-end pixel-wise classification (Long, 
Shelhamer and Darrell, 2015), later refined by architectures 
such as U-Net (Ronneberger, Fischer and Brox, 2015) and 
DeepLab (Chen, Wei and Wang, 2018), which improved edge 
definition and detail retention. Subsequent innovations, 
including Mask R-CNN (He et al., 2018) and vision 
transformers (Chen, Hsieh and Gong, 2022), further improved 
contextual understanding. Most notably, foundation models like 
Meta’s Segment Anything Model (SAM), trained on over a 
billion masks now enable robust zero-shot generalisation across 
diverse object categories (Kirillov et al., 2023). This is 
particularly pertinent in heritage domains where stylistic 
variability and limited annotated datasets make conventional 
supervised learning approaches infeasible (Remondino et al., 
2022). 

Object detection has followed a parallel trajectory. The YOLO 
model family, particularly in later iterations (Wang, 
Bochkovskiy and Liao, 2022), has achieved a strong balance 
between inference speed and detection accuracy. YOLO World 
(Cheng et al., 2024) marks a notable evolution, enabling open-
vocabulary detection through integration with large-scale 
language models. This capacity to identify previously unseen 
object types is highly relevant in historic environments, where 
architectural features are often bespoke, undocumented, or 
stylistically hybrid (Croce, Caroti, Piemonte, et al., 2021). 
YOLO-based approaches have been used to detect façade 
components (Zhao et al., 2025) and diagnose structural 
pathologies (Chen, He and Wang, 2025) Likewise, SAM has 
recently been tested on indoor panoramic heritage imagery, 
successfully identifying architectural elements, albeit with 
performance degradation at image peripheries due to panoramic 
distortion (Zhong et al., 2025). 

Despite these advances, integration between 2D vision models 
and 3D point cloud workflows in heritage contexts remains 
limited. Cultural heritage documentation typically relies on 
laser scanning or photogrammetry, yielding dense but 
unstructured point clouds that underpin HBIM. Converting 
these into semantically structured BIM elements is a persistent 
challenge. Classical techniques have been applied to heritage 
datasets  (Czerniawski et al., 2018; Croce, Caroti, De Luca, et 
al., 2021), but semantic richness is limited without extensive 
labelled training data. More recent deep networks, such as 
PointNet and SparseCNN (Huang et al., 2022; Haznedar et al., 
2023), show improved performance but remain computationally 
demanding, domain-specific, and reliant on large, annotated 
datasets. 

Recent reviews corroborate these limitations. Puerto et al., 
(2024) identify a lack of generalisable automated segmentation 
methods suited to HBIM, with point-based networks struggling 
in ornamentally complex environments. Graph-based 
approaches applied to heritage datasets (Pierdicca et al., 2020) 
show promise but have yet to produce BIM-ready outputs. 
PointNet applications, such as those by Haznedar et al., (2023) 
on Gaziantep’s heritage, required heavy augmentation for 
modest classification accuracy. Similarly, while Croce et al., 
(2023) successfully classified façade imagery with 2D CNNs, 
these results have yet to be integrated into spatial models or 
HBIM workflows. A comprehensive review by Şentürk and 

Şimşek, (2024) confirms that no current AI system offers fully 
automated parametric object generation from 3D point clouds 
within heritage applications. 

 
3. Key learnings from the Previous Machine Learning 

Experiments for Point Cloud Segmentation 

Prior to adopting deep learning, a series of classical machine 
learning experiments were conducted to segment and classify 
point clouds from a representative heritage dataset. The 
evaluation of RANSAC, DBSCAN, HDBSCAN, K-Nearest 
Neighbours (KNN), and Random Forest (RF) revealed 
significant limitations in automation, generalisation, and 
semantic clarity, ultimately guiding the decision to explore 
image-based AI methods. 
 
RANSAC, applied for planar segmentation, successfully 
extracted major flat surfaces such as walls and floors. However, 
it could not generalise to non-planar features like stairs, vaults, 
or decorative elements, and was prone to ambiguity in multi-
planar environments. Its outputs were purely geometric, lacking 
semantic interpretation. 
 
DBSCAN and HDBSCAN enabled clustering of discrete 
objects based on point density and scale. While effective in 
identifying standalone elements such as benches or sculptures, 
these algorithms required sensitive parameter tuning and often 
over-segmented continuous architectural features. HDBSCAN 
mitigated some tuning burdens but introduced its own 
subjective thresholds for defining cluster persistence. 
 
K-Nearest Neighbours (KNN) was tested as a supervised 
classifier using manually labelled exemplars. Although simple 
to implement, its accuracy deteriorated in complex scenes due 
to proximity-based confusion (e.g., misclassifying adjacent 
paintings and walls) and its inability to scale to high-density 
point clouds. 
 
Random Forests (RF) yielded the most promising supervised 
results. When trained on manually annotated segments, RF 
achieved high classification accuracy within the same room. 
However, it failed to generalise across spaces and required 
extensive feature engineering and labelled training data, 
limiting its automation potential. 
 
Collectively, these trials underscored the need for a  
generalisable and semantically enriched approach. In particular, 
the lack of automated semantic interpretation and the labour-
intensive training workflows prompted a shift toward deep 
learning models that leverage pre-trained visual understanding. 
This informed the adoption of panoramic image segmentation 
using SAM and YOLO World as explored in subsequent 
sections. 
 
Consequently, a hybrid approach, where panoramic images 
mediate between 2D vision and 3D segmentation, offers a 
compelling middle ground. By leveraging robust pretrained 
models on panoramas, then projecting the results into 3D, it 
may be possible to semantically enrich point clouds with 
minimal manual labelling. This integration bridges the 
generality of modern computer vision with the precision 
demanded by HBIM workflows. 
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4. Materials and Methods 

The research presented in the paper adopts an experimental 
approach to measure the effectiveness of image based Deep 
Learning classification systems. 
 
4.1 Case Study Context: Royal Museums Greenwich  

The Queen’s House in Greenwich, designed by Inigo Jones and 
completed in 1635, is recognised as the first fully classical 
building in England (Delman, 2021). Commissioned originally 
for Anne of Denmark and later completed under Queen 
Henrietta Maria, it exemplifies the application of Palladian 
architectural principles, symmetry, classical orders, and 
mathematical proportion in British architecture. The building 
now forms part of the Royal Museums Greenwich (RMG) estate 
and sits within the Maritime Greenwich UNESCO World 
Heritage Site, alongside the Royal Observatory and the National 
Maritime Museum (Smith, 2003). 

Figure 1. Quens House, the case study building for point cloud 
segmentation. 

 
Architecturally, the Queen’s House offers a unique mix of 
complex geometries, curved staircases, and decorative cornices, 
presenting an ideal testbed for the segmentation of heritage 
datasets. Its historical importance and preservation need 
underscore the relevance of advanced documentation methods 
such as HBIM. The dataset used in this study comprises a high-
resolution terrestrial laser scan of the Queen’s House, totalling 
approximately 1.2 billion points. The scan includes interior and 
partial exterior coverage and is complemented by registered 
360° panoramic images. These served as the visual input for 
segmentation and classification tasks, linking 2D and 3D 
representations. 
 
4.2 Technical Specification  

All experiments were conducted on a high-performance 
computing workstation specifically configured for processing 
large-scale 3D datasets and high-resolution image segmentation. 
The machine featured an AMD Ryzen Threadripper PRO 
5965WX processor, operating at 3.8 GHz across 24 cores, 
enabling extensive parallelisation for computationally intensive 
tasks such as point cloud manipulation and segmentation. The 
system was equipped with 256 GB of ECC DDR4 RAM to 
support the simultaneous handling of multiple datasets and 
memory-heavy image processing operations. Deep learning 
inference, including the execution of Meta’s Segment Anything 
Model (SAM) and YOLO World, was accelerated using an 
NVIDIA RTX A6000 graphics processing unit, which provided 
48 GB of dedicated VRAM. The use of a 4 TB NVMe solid-

state drive ensured rapid input/output operations for large-scale 
laser scans and 360° imagery. 
 
The core implementation environment was based on Python 
3.10, with essential libraries including OpenCV for image 
manipulation, NumPy for array processing, and Matplotlib for 
visualisation. Segmentation was performed using the official 
ViT-h checkpoint of the SAM model, accessed through Meta’s 
GitHub repository, while semantic object detection was 
conducted using YOLO World, integrated via an open-
vocabulary model based on CLIP embeddings. Visual 
inspection of results and validation of back-projected segments 
were performed using CloudCompare, which facilitated the 
overlay of segmentation outputs onto the original point clouds. 
In addition, synthetic panoramic images were rendered from the 
3D scans using custom scripts, with camera calibration data 
derived from the original LiDAR metadata. This ensured a 
geometrically accurate correspondence between 2D image 
masks and their associated 3D coordinates during the 
reprojection stage. 
 
4.3 Implementation Process Flow  

The core of this research is a four-stage experimental workflow 
that investigates the feasibility of using image-based deep 
learning models for the segmentation and semantic 
classification of 3D point clouds in a heritage context. This 
workflow was designed to integrate 2D vision models with 3D 
geometric datasets, specifically those representing historically 
significant buildings. Each stage builds incrementally upon the 
preceding one to address key challenges in transitioning from 
raw point clouds to semantically enriched HBIM-ready outputs. 
The overall implementation plan is illustrated in Figure 2. 
 

 
Figure 2. Experiment Implementation Workflow Plan 

 
The workflow (pipeline) begins with applying a general-
purpose segmentation model (SAM) to a panoramic image of 
the scene (Step 1). Next, the resulting 2D mask is back-
projected into the 3D point cloud to test geometric alignment 
(Step 2). Step 3 evaluates the combined use of SAM 
segmentation and back-projection on both real and synthetic 
panoramic images to compare results. Finally, Step 4 introduces 
a semantic labelling step using the YOLO World detection 
framework to assign meaningful classes to the segments. 
Together, these steps form a pipeline that takes raw point cloud 
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data and produces a segmented, labelled point cloud through the  
intermediate image processing. The detailed implementation of 
each step is described below. 
 
 
4.3.1 Step 1: Feasibility of Meta SAM on Panoramic 
Images: The first stage explored the viability of using the 
Segment Anything Model (SAM), developed by Meta AI, to 
segment architectural features within panoramic images derived 
from laser scan data. SAM is a foundation model trained on 
over a billion masks and designed for general-purpose 
segmentation. The model was deployed using the ViT-h 
checkpoint within an open-source Python environment. The 
panoramic images used as input were formatted in 
equirectangular projection (4000×3000 pixels) and originated 
from both real scanner photography and synthetically rendered 
scenes based on point cloud data. 
 
SAM’s architecture comprises three modules: a Vision 
Transformer-based encoder that extracts image features, a 
prompt encoder that interprets spatial cues such as points and 
boxes, and a mask decoder that generates binary segmentation 
outputs. For this research, SAM was run in fully automatic 
mode, generating a grid of prompt points across the image to 
produce multiple candidate masks without manual intervention. 
The objective was to assess whether SAM, trained primarily on 
perspective photography, could identify structural and 
artefactual elements such as walls, doors, benches, and 
paintings in the highly distorted geometry typical of 360° 
imagery. The resulting masks were exported as both coloured 
overlays and individual binary mask files for further processing. 
 
4.3.2 Step 2: Back-Propagation of Segmentation Results 
into 3D Space: Following segmentation, the second stage 
addressed the projection of the 2D segmentation results back 
into 3D space. This was achieved by exploiting the known 
geometric relationship between the panoramic images and the 
original point cloud from which they were derived. Each pixel 
in the 2D image has a corresponding 3D point in the LiDAR 
scan, allowing for a pixel-wise transfer of mask labels from the 
image to the point cloud. 
 
The reprojection algorithm was implemented in Python using 
OpenCV and NumPy. For each binary mask, the image 
coordinate system was transformed back into spherical 
coordinates and then mapped to the appropriate 3D point. This 
mapping relied on the original scan metadata, including scanner 
position, rotation, and internal orientation parameters. Points 
corresponding to pixels within a given segmentation mask were 
assigned an identifier and coloured accordingly for visual 
validation. 
 
This stage tested the geometric accuracy and viability of mask-
to-point reprojection. Key challenges addressed included 
occlusion handling (i.e., ensuring points behind surfaces were 
not erroneously labelled), distortion compensation (due to 
equirectangular projection), and the granularity of segmentation 
boundaries. Visual validation was performed using 
CloudCompare to inspect whether segmented objects in the 
image corresponded to coherent point clusters in space. 
 

4.3.3 Step 3: Integrated Segmentation and Reprojection: 
In the third step, the SAM-back-projection pipeline was applied 
to two types of panoramic inputs: real photographs captured by 
the laser scanner’s onboard camera, and synthetic panoramas 
rendered from the 3D point cloud. The synthetic images were 
generated using a custom script that emulated the scanner’s 
viewpoint and field of view, with uniform lighting, full surface 
coverage, and no optical artefacts. 
 
The rationale for this comparison stemmed from the hypothesis 
that synthetic images, being free from exposure inconsistencies, 
glare, occlusions, and reflective surfaces, would yield more 
accurate segmentation results than real images. Both image 
types were processed through the same SAM model, and their 
respective segmentation masks were back-projected to generate 
labelled point clouds. 
 
The results were analysed qualitatively by comparing the 
completeness, coherence, and boundary accuracy of the 
segmented objects. Special attention was given to difficult 
regions such as glossy floors, areas with shadow, and high-
curvature elements like staircases and cornices. Quantitative 
analysis, where applicable, included point coverage per 
segment, mask fragmentation, and detection consistency across 
images. This step was instrumental in identifying whether 
synthetic imagery can act as a reliable intermediary for 
segmentation workflows, especially in heritage environments 
where real photographic conditions are often suboptimal. 
 
4.3.4 Step 4: Semantic Classification with YOLO World: 
The final step introduced the semantic enrichment by applying 
YOLO World, a recent open-vocabulary object detection model 
that combines YOLO’s real-time detection capabilities with 
CLIP-based semantic generalisation. Unlike traditional object 
detectors limited to fixed class labels, YOLO World can assign 
descriptors to previously unseen object types based on visual-
linguistic embedding alignment. This is particularly valuable in 
heritage contexts where domain-specific elements such as 
statues, historical furniture, or bespoke architectural ornaments, 
may not appear in standard training datasets. 
 
The same panoramic images used in SAM segmentation were 
input into the YOLO World model, which returned bounding 
boxes with associated labels and confidence scores. These 
outputs were then spatially matched with SAM-generated masks 
using intersection-over-union (IoU) heuristics. When a YOLO 
detection overlapped significantly with a SAM segment, the 
segment was assigned the corresponding class label. This 
process effectively merged pixel-wise segmentation with object-
level semantic understanding, allowing point clusters to inherit 
meaningful labels such as "door", "painting", or "bench". 
 
The resulting semantically segmented point cloud could then be 
used as a basis for further HBIM modelling or ontological 
mapping. Visual inspection of the output was again performed 
in CloudCompare, while misclassified or unlabelled segments 
were logged for discussion in the subsequent analysis section. 
This final stage demonstrated the potential of combining 
general-purpose image models to produce semantically 
structured 3D data in a scalable, largely automated manner. 
 
 

5. Findings 

The findings of this research are presented in alignment with the 
four experimental steps outlined in the implementation process 
flow (section 4.3). These results assess segmentation 
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completeness, reprojection fidelity, and semantic classification 
performance, with comparisons drawn between synthetic and 
real panoramic inputs. 
 
5.1 Step 1 Findings 

Meta’s Segment Anything Model (SAM) was successfully 
applied to both real and synthetic panoramic images without 
fine-tuning. On real scanner-derived imagery, SAM detected 
and delineated primary architectural elements such as walls, 
floors, ceilings, and large fixtures (Figure 3). It also produced 
masks for several freestanding objects including benches and 
framed paintings. However, segmentation quality was variable. 
Thin, reflective, or shadowed features such as lights, stair rails, 
or picture frames, were frequently omitted or fragmented. 
Curved ceiling mouldings, in particular, were only partially 
detected. 
 

 
 

Figure 3. SAM Results on LiDAR Scanner Image. 

 
SAM performed markedly better on synthetic panoramic inputs 
rendered from point cloud data (Figure 5). These images 
featured uniform lighting and controlled exposure, reducing 
visual noise. Segmentation masks derived from synthetic 
images were  spatially complete and topologically consistent. 
The SAM model generated few fragmented regions, and large 
elements like walls and floors appeared as single, cohesive 
masks. Notably, few “unclassified” segments were generated in 
the synthetic case, confirming the hypothesis that image quality 
and visual uniformity directly affect segmentation reliability. 
 
5.2 Step 2 Findings 

Back-projection of 2D segmentation masks into the 3D point 
cloud validated the geometric accuracy of the reprojection logic. 
Using known camera positions and the panorama-to-point 
correspondence map, each SAM mask was successfully 
assigned to subsets of 3D points. As shown in Figure 4, large 
surfaces such as a wall-mounted painting or a gallery bench 
were clearly visible within the 3D cloud once back-projected, 
retaining the spatial coherence of the original mask. 
 

 
 

Figure 4. Back Propagation Results.  
 
Nevertheless, some errors were introduced during projection. 
Due to the lack of depth-awareness in 2D segmentation, SAM 
masks occasionally "bled" onto background surfaces aligned 
along the same line of sight. For instance, lights suspended from 
the ceiling projected onto the ceiling surface itself. This issue 
was particularly evident in areas with overlapping geometries. 
Furthermore, a recurring artefact, the so-called “scanning 
circle”, was identified as a false segment. This refers to the 
circular void directly below the scanner, which appeared dark in 
the panorama and was often segmented as an object, despite 
corresponding to an absence of data. 
 
5.3 Step 3 Findings 

The comparative analysis of segmentation results between real 
and synthetic panoramas highlighted significant improvements 
in the latter. As illustrated in Figure 5, the synthetic input 
resulted in more unified and complete mask coverage than sole 
real input. For example, the gallery floor was segmented as a 
single contiguous region in the synthetic case, whereas it was 
fragmented across three segments in the real image. Similarly, 
SAM generated over 25 distinct mask regions on the real 
panorama, including many small unlabelled artefacts, compared 
to only 16 on the synthetic equivalent—indicating a 36% 
reduction in fragmentation. 
 

 
 
 

Figure 5. Segment Anything Meta Point Cloud Results. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-M-2-2025 
30th CIPA Symposium “Heritage Conservation from Bits:  

From Digital Documentation to Data-driven Heritage Conservation”, 25–29 August 2025, Seoul, Republic of Korea

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-M-2-2025-97-2025 | © Author(s) 2025. CC BY 4.0 License.

 
101



 

Unclassified pixel coverage was also reduced by approximately 
20% in the synthetic case. Shadows, specular reflections on 
floors and framed artwork, and lighting inconsistencies in the 
real panorama were identified as causes for mask fragmentation 
and omission. These effects were absent in the synthetic image, 
which suggests that point-cloud-derived panoramic imagery 
may serve as a robust input for point cloud segmentation in 
heritage. 
 
5.4 Step 4 Findings 

Semantic classification using YOLO World provided a critical 
interpretive layer. On both image types, YOLO accurately 
identified large structural elements such as walls, ceilings, 
floors, doors, windows, and seating as shown in Figures 6 and 
7. Additionally, the model recognised several smaller objects 
such as paintings and sculptures, often labelling them as 
“picture”, “art”, or “sculpture” based on learned visual-
linguistic embeddings. 
 
Detection reliability improved in the synthetic image case. All 
four ceiling-mounted lights, missed in the real panorama, were 
correctly classified in the synthetic image. This is likely due to 
enhanced contrast and spatial separation in the synthetically 
rendered image. YOLO World also demonstrated increased 
classification confidence: the average confidence score for 
correctly labelled objects was 0.58 in the synthetic case, 
compared to 0.46 in the real case. 
 
Processing times for YOLO detection were also observed. For 
4000×3000-pixel inputs, semantic detection on real panoramas 
averaged 90 seconds per image, whereas synthetic images 
processed in under 50 seconds. This performance improvement 
is attributed to reduced visual complexity and texture 
uniformity in the synthetic panoramas. 
 

 
Figure 6. YOLO Results on LiDAR laser scanner panoramic 

image. 

 

Figure 7. YOLO Result on Synthetically created panoramic 
image. 

 
A confidence threshold of 30–40% yielded the optimal balance 
between false positives and false negatives. Lower thresholds 
introduced spurious labels (e.g. a statue misclassified as 

“person”), while thresholds above 50% missed smaller valid 
objects. Once bounding boxes were obtained, they were aligned 
with SAM mask regions using intersection-over-union (IoU) 
metrics. Each SAM mask was assigned the YOLO label with 
the highest spatial overlap, allowing class descriptors to 
propagate into the 3D point cloud. 
 
 

6. Discussion 

This research has established a proof-of-concept for combining 
image-based deep learning methods with 3D point cloud data to 
automate segmentation and semantic labelling processes within 
Heritage Building Information Modelling (HBIM) workflows. 
The  image based deep learning implementation process flow, 
comprising SAM segmentation, 2D-to-3D reprojection, 
comparative testing of real and synthetic panoramas, and 
semantic integration via YOLO World, has surfaced a range of 
practical insights. This section critically analyses those findings, 
acknowledging both the contributions and constraints of the 
proposed pipeline approach, and positions the study within a 
wider framework for future HBIM automation. 
 
A key contribution of the study is the demonstration that 
foundation vision models trained on generic 2D imagery can be 
repurposed, with minimal adaptation, to segment architectural 
features in panoramic representations of heritage interiors. The 
Segment Anything Model (SAM) exhibited strong 
generalisation, effectively delineating large surfaces and 
furnishing boundaries, even within highly distorted 
equirectangular projections. Notably, SAM achieved this 
without fine-tuning, indicating that the geometric abstraction of 
architectural elements is well-aligned with the image features 
these models are trained to recognise. 
 
However, segmentation quality was heavily influenced by the 
nature of the input imagery. SAM performed significantly better 
on synthetic panoramas than on real panoramic photographs. 
Synthetic views, rendered from the point cloud under controlled 
lighting and perspective, reduced issues such as glare, exposure 
imbalance, and occlusion shadows. This finding supports the 
proposition that synthetic image generation can act as a valuable 
pre-processing step, increasing the fidelity and coherence of AI-
driven segmentation, especially in complex heritage 
environments. The cleaner output also facilitated  accurate 
back-projection into 3D, resulting in large,  complete, and 
spatially consistent segment clusters. 
 
The 2D-to-3D back-projection stage confirmed that a direct 
image-to-point mapping is computationally efficient and 
geometrically valid. Nonetheless, it also exposed important 
limitations. Chief among these was depth ambiguity: because 
panoramic images lack inherent depth awareness, projected 
segment masks sometimes “bled” onto surfaces behind the 
target object, especially in scenes with nested or overlapping 
geometries. One symptomatic error was the mislabelling of 
ceiling planes behind light fixtures. Another artefact, the 
“scanning circle” (a dark void beneath the scanner), was 
consistently interpreted by SAM as a valid object, indicating 
that models can misread data acquisition artefacts as physical 
elements. These issues suggest that naïve reprojection from 
image masks must be complemented by depth filters or 
visibility constraints to improve reliability. 
 
The introduction of YOLO World in the final stage provided 
crucial semantic enrichment. The model’s open-vocabulary 
detection capabilities allowed it to assign meaningful class 
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labels to detected objects, bridging the semantic gap between 
geometric segmentation and HBIM ontology. YOLO World 
operated  reliably on synthetic panoramas, showing improved  
performance in identifying subtle or high-level features such as 
sculptures, lights, or picture frames. Detection confidence was 
optimised within a 30–40% threshold, and spatial mapping of 
YOLO outputs to SAM segments proved effective in generating 
labelled 3D content. However, label granularity remained a 
challenge: while “bench” and “door” were consistently 
identified,  specialised heritage terms, such as “pediment”, 
“cornice”, or “architrave”, were either misclassified or absent 
entirely. This exposes a limitation of relying solely on generic 
language-image models in a domain that demands high-
resolution architectural taxonomy. 
 
Processing times for SAM (~60 seconds/panorama) and YOLO 
World (~50–90 seconds/panorama) were reasonable for 
prototype purposes but may prove prohibitive for large-scale 
deployment across hundreds of spaces. The results therefore 
highlight the need for workflow optimisation, potentially 
through model compression, parallelised computation, or more 
efficient segmentation proxies. 
 
The most valuable outcome of this research is the validation of 
a novel architectural segmentation paradigm: one that shifts 
from traditional geometry-centric heuristics towards visual-
semantic hybridisation. In this paradigm, foundational models 
provide object-awareness via learned priors, and point clouds 
supply geometric context. This approach introduces a scalable, 
replicable method for interpreting heritage environments with 
reduced human input, an increasingly critical need in 
conservation surveying, archival digitisation, and pre-
refurbishment planning. 
 

 
 

Figure 8. Proposed future investigation pipeline for image-
based segmentation. 

 
Looking forward, Figure 8 encapsulates a proposed pipeline to 
address current limitations and scale the approach. Central to 
this future pipeline is the multi-view segmentation strategy, 
wherein multiple panoramas are either captured or synthetically 
rendered per space. This would mitigate occlusion artefacts and 
enhance spatial redundancy. These images would be processed 
using efficient variants of SAM and YOLO World, potentially 
fine-tuned for architectural contexts. Segment outputs would be 
merged through depth-informed fusion techniques to ensure 
consistency across views. 
 

The framework also integrates depth-aware back-projection 
algorithms, capable of occlusion filtering using Z-buffer logic 
or range maps, to restrict label propagation to visible surfaces. 
Such improvements would correct for “label bleeding” and 
enable the clean layering of semantic information onto 
occlusion-heavy scenes. Downstream, ontology mapping 
modules would interpret YOLO-derived labels into structured 
vocabularies aligned with IFC or Uniclass systems. These 
enriched outputs could then be automatically exported as object 
clusters or parametric placeholders for BIM authoring 
platforms. 
 
This research confirms that the application of image based deep 
learning point cloud segmentation models to heritage datasets is 
not only feasible but also strategically advantageous. The 
integration of image-based segmentation with point cloud 
reprojection and open-vocabulary classification creates a 
promising pathway toward semi-automated HBIM generation. 
While refinement is needed, particularly around label precision, 
occlusion handling, and computational scalability, the 
methodological direction is sound. With the continued 
development, the proposed solution in the paper offers a 
scalable approach to semantic data enrichment in digital 
heritage practice, bridging the gap between visual perception 
and spatial modelling. 
 
 

7. Conclusion 

This study presents a technically grounded proof of concept for 
integrating image-based deep learning models into the 
segmentation and semantic labelling of 3D point cloud data 
within a heritage context. By combining the Segment Anything 
Model (SAM) for region extraction with YOLO World for 
object classification, the research proposes a hybrid pipeline 
(workflow) that bridges visual understanding and spatial 
precision, contributing to emerging approaches for automating 
Heritage Building Information Modelling (HBIM). 
 
The proposed hybrid pipeline comprised four steps: i) 
segmentation of panoramic images using SAM, ii) reprojection 
of image masks into the point cloud, iii) comparative testing of 
synthetic versus real panoramas, and iv) semantic enrichment 
using YOLO World. The results confirmed that both models, 
despite being trained on conventional 2D datasets, could 
generalise effectively to panoramic representations of heritage 
interiors. In particular, synthetic images yielded more coherent 
and complete segmentations than real-world photographs, while 
semantic alignment via YOLO World facilitated the labelling of 
point cloud clusters with object-level descriptors such as 
“door”, “bench”, and “painting”. 
 
Nevertheless, the study also revealed critical limitations. The 
lack of depth-awareness in SAM led to projection artefacts, 
including mislabelling of occluded surfaces and the introduction 
of non-existent features such as the scanning circle. YOLO 
World, though semantically rich, struggled with fine-grained 
architectural classifications and occasionally produced 
inconsistent results in areas of image distortion. Both models 
were originally trained on large-scale, rectilinear datasets and 
were not optimised for the radial distortions or occlusion 
patterns inherent in 360° indoor imagery. 
 
Addressing these constraints will require several technical 
extensions. Depth-informed back-projection, multi-view 
consistency enforcement, and the adoption of panoramic-aware 
detection models, such as Omnidirectional YOLO, may enhance 
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spatial accuracy and label robustness. Furthermore, mapping 
YOLO outputs to structured HBIM ontologies such as IFC or 
Uniclass could improve semantic relevance and facilitate 
integration into BIM environments. Incorporating domain-
specific rules or knowledge graphs may also support the 
hierarchical labelling of architectural elements (e.g., 
distinguishing an “interior wall” from an “original load-bearing 
wall”), aligning outputs with heritage interpretation goals. 
 
Looking forward, the future workflow outlined in Figure 8 
offers a scalable pathway for automating HBIM. It envisions a 
multi-view, depth-aware, and semantically structured system in 
which panoramic inputs are processed through lightweight and 
tuned vision models, generating interoperable 3D models ready 
for downstream applications in conservation, refurbishment, 
and digital archiving. 
 
In conclusion, this research demonstrates that fusing state-of-
the-art image segmentation with spatially accurate point cloud 
data represents a promising strategy for automating the 
generation of semantically enriched HBIM datasets. While 
challenges remain in model adaptation, semantic depth, and 
computational scaling, the foundation laid in the paper provides 
a practical and forward-compatible approach to advancing 
digital heritage workflows. 
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