PATTERN CLASSIFICATION APPROACHES TO MATCHING BUILDING POLYGONS AT MULTIPLE SCALES
Keywords: Data Matching, Multi-Scale Modeling, Map Generalization, Pattern Classification, Building Feature
Abstract. Matching of building polygons with different levels of detail is crucial in the maintenance and quality assessment of multi-representation databases. Two general problems need to be addressed in the matching process: (1) Which criteria are suitable? (2) How to effectively combine different criteria to make decisions? This paper mainly focuses on the second issue and views data matching as a supervised pattern classification. Several classifiers (i.e. decision trees, Naive Bayes and support vector machines) are evaluated for the matching task. Four criteria (i.e. position, size, shape and orientation) are used to extract information for these classifiers. Evidence shows that these classifiers outperformed the weighted average approach.