True-orthophoto generation from UAV images: Implementation of a combined photogrammetric and computer vision approach
Keywords: Automation, Matching, True-Orthophoto, UAV
Abstract. This paper presents a photogrammetric methodology for true-orthophoto generation with images acquired from UAV platforms. The method is an automated multistep workflow made up of three main parts: (i) image orientation through feature-based matching and collinearity equations / bundle block adjustment, (ii) dense matching with correlation techniques able to manage multiple images, and true-orthophoto mapping for 3D model texturing. It allows automated data processing of sparse blocks of convergent images in order to obtain a final true-orthophoto where problems such as self-occlusions, ghost effects, and multiple texture assignments are taken into consideration.
The different algorithms are illustrated and discussed along with a real case study concerning the UAV flight over the Basilica di Santa Maria di Collemaggio in L'Aquila (Italy). The final result is a rigorous true-orthophoto used to inspect the roof of the Basilica, which was seriously damaged by the earthquake in 2009.