A GLOBAL SOLUTION TO TOPOLOGICAL RECONSTRUCTION OF BUILDING ROOF MODELS FROM AIRBORNE LIDAR POINT CLOUDS
Keywords: Global optimization, Building reconstruction, Roof topology, LiDAR, Point clouds
Abstract. This paper presents a global solution to building roof topological reconstruction from LiDAR point clouds. Starting with segmented roof planes from building LiDAR points, a BSP (binary space partitioning) algorithm is used to partition the bounding box of the building into volumetric cells, whose geometric features and their topology are simultaneously determined. To resolve the inside/outside labelling problem of cells, a global energy function considering surface visibility and spatial regularization between adjacent cells is constructed and minimized via graph cuts. As a result, the cells are labelled as either inside or outside, where the planar surfaces between the inside and outside form the reconstructed building model. Two LiDAR data sets of Yangjiang (China) and Wuhan University (China) are used in the study. Experimental results show that the completeness of reconstructed roof planes is 87.5%. Comparing with existing data-driven approaches, the proposed approach is global. Roof faces and edges as well as their topology can be determined at one time via minimization of an energy function. Besides, this approach is robust to partial absence of roof planes and tends to reconstruct roof models with visibility-consistent surfaces.