ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume IV-2/W5
https://doi.org/10.5194/isprs-annals-IV-2-W5-307-2019
https://doi.org/10.5194/isprs-annals-IV-2-W5-307-2019
29 May 2019
 | 29 May 2019

INDOOR SCENE REGISTRATION BASED ON SIAMESE NETWORK AND POINTNET

Z. Zhang, C. Wen, Y. Chen, W. Li, C. You, C. Wang, and J. Li

Keywords: Mobile LiDAR Data, Registration, Descriptor, Siamese Network, PointNet, Indoor Scene

Abstract. This paper presents a deep learning feature-based method for registration of indoor mobile LiDAR data. Our method is to input point cloud directly, which is more robust to noise than traditional algorithms. The proposed method involves three steps. We first extract the key points by Harris3D algorithm and get their local patches by our sampling method. Second, a Siamese network is trained to describe the patches as local descriptors. Finally, we obtain the final matching pairs depends on the distance which is between two descriptors, and then solve the transformation matrix. The accuracy of registration is within 6 cm when the overlap is greater than 35%. In order to improve the registration accuracy, the ICP algorithm is used to fine-tuning the registration results. And the final registration accuracy is within 3.5 cm. The experiments show that our method applied to the registration of indoor mobile LiDAR data robustly and accurately.