
|
17 Jun 2021
INDIVIDUAL TREE EXTRACTION FROM UAV LIDAR POINT CLOUDS BASED ON SELF-ADAPTIVE MEAN SHIFT SEGMENTATION
Z. Hui, N. Li, Y. Xia, P. Cheng, and Y. He
Related authors
A Progressive Noise Removal Method for ICESat-2 Data Based on Terrain Slope Adaptive Calculation
Zhenyang Hui, Li Zhang, Ying Chen, Penggen Cheng, Yuanping Xia, Ting Hui, and Ziyan Huang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 673–678, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-673-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-673-2025, 2025
INDIVIDUAL TREE AGB ESTIMATION BASED ON FRACTAL PARAMETERS AND TREE VOLUME
Z. Hui, Y. Xiong, Y. Xia, T. Hui, P. Cheng, and Z. Cai
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 561–566, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-561-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-561-2023, 2023
FRACTAL DIMENSION BASED SUPERVISED LEARNING FOR WOOD AND LEAF CLASSIFICATION FROM TERRESTRIAL LIDAR POINT CLOUDS
Z. Hui, Y. Xia, Y. Nie, Y. Chang, H. Hu, N. Li, and Y. He
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 95–99, https://doi.org/10.5194/isprs-annals-V-1-2020-95-2020,https://doi.org/10.5194/isprs-annals-V-1-2020-95-2020, 2020
A NOVEL DENOISING ALGORITHM FOR AIRBORNE LIDAR POINT CLOUD BASED ON EMPIRICAL MODE DECOMPOSITION
Z. Hui, P. Cheng, L. Wang, Y. Xia, H. Hu, and X. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1021–1025, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1021-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1021-2019, 2019
A Progressive Noise Removal Method for ICESat-2 Data Based on Terrain Slope Adaptive Calculation
Zhenyang Hui, Li Zhang, Ying Chen, Penggen Cheng, Yuanping Xia, Ting Hui, and Ziyan Huang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 673–678, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-673-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-673-2025, 2025
Analysis of surface deformation and related factors over mining areas based on InSAR: A case study of Fengcheng mine
Xiaying Wang, Shuaiqiang Chen, Yuanping Xia, Yufen Niu, Jun Gong, and Yumei Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 697–712, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-697-2024,https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-697-2024, 2024
INDIVIDUAL TREE AGB ESTIMATION BASED ON FRACTAL PARAMETERS AND TREE VOLUME
Z. Hui, Y. Xiong, Y. Xia, T. Hui, P. Cheng, and Z. Cai
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 561–566, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-561-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-561-2023, 2023
FRACTAL DIMENSION BASED SUPERVISED LEARNING FOR WOOD AND LEAF CLASSIFICATION FROM TERRESTRIAL LIDAR POINT CLOUDS
Z. Hui, Y. Xia, Y. Nie, Y. Chang, H. Hu, N. Li, and Y. He
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 95–99, https://doi.org/10.5194/isprs-annals-V-1-2020-95-2020,https://doi.org/10.5194/isprs-annals-V-1-2020-95-2020, 2020
A NOVEL DENOISING ALGORITHM FOR AIRBORNE LIDAR POINT CLOUD BASED ON EMPIRICAL MODE DECOMPOSITION
Z. Hui, P. Cheng, L. Wang, Y. Xia, H. Hu, and X. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1021–1025, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1021-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1021-2019, 2019