ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume V-3-2020
https://doi.org/10.5194/isprs-annals-V-3-2020-173-2020
https://doi.org/10.5194/isprs-annals-V-3-2020-173-2020
03 Aug 2020
 | 03 Aug 2020

INCORPORATING INDEPENDENT COMPONENT ANALYSIS AND MULTI-TEMPORAL SAR TECHNIQUES TO RETRIEVE RAPID POSTSEISMIC DEFORMATION

S. Vajedian

Keywords: Independent Component Analysis (ICA), Cluster analysis, Postseismic deformation, InSAR Time series analysis

Abstract. This study investigates the ongoing postseismic deformation induced by two moderate mainshocks of Mw 6.1 and Mw 6.0, 2017 Hojedk earthquake in Southern Iran. Available Sentinel-1 TOPS C-band Synthetic Aperture Radar (SAR) images over about one year after the earthquakes are used to analyze the postseismic activities. An adaptive method incorporating Independent Component Analysis (ICA) and multi-temporal Small BAseline Subset (SBAS) Interferometric SAR (InSAR) techniques is proposed and implemented to recover the rapid deformation. This method is applied to the series of interferograms generated in a fully constructed SBAS network to retrieve the postseismic deformation signal. ICA algorithm uses a linear transformation to decompose the input mixed signal to its source components, which are non-Gaussian and mutually independent. This analysis allows extracting the low rate postseismic deformation signal from a mixture of interferometric phase components. The independent sources recovered from the multi-temporal InSAR dataset are then analyzed using a group clustering test aiming to identify and enhance the undescribed deformation signal. Analysis of the processed interferograms indicates a promising performance of the proposed method in determining tectonic deformation. The proposed method works well, mainly when the tectonic signal is dominated by the undesired signals, including atmosphere or orbital/unwrapping noise that counts as temporally uncorrelated components.

In contrast to the standard SBAS time series method, the ICA-based time series analysis estimates the cumulative deformation with no prior assumption about elevation dependence of the interferometric phase or temporal nature of the tectonic signal. Application of the method to 433 Sentinel-1 pairs within the dataset reports two distinct deformation patches corresponding to the postseismic deformation. Besides the performance of the ICA-based analysis, the proposed method automatically detects rapid or low rate tectonic processes in unfavorable conditions.