ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume V-3-2021
https://doi.org/10.5194/isprs-annals-V-3-2021-295-2021
https://doi.org/10.5194/isprs-annals-V-3-2021-295-2021
17 Jun 2021
 | 17 Jun 2021

END-TO-END PHYSICS-INFORMED REPRESENTATION LEARNING FOR SATELLITE OCEAN REMOTE SENSING DATA: APPLICATIONS TO SATELLITE ALTIMETRY AND SEA SURFACE CURRENTS

R. Fablet, M. M. Amar, Q. Febvre, M. Beauchamp, and B. Chapron

Related authors

Predicting particle catchment areas of deep-ocean sediment traps using machine learning
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024,https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Integrating wide swath altimetry data into Level-4 multi-mission maps
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2024-2345,https://doi.org/10.5194/egusphere-2024-2345, 2024
Short summary
4DVarNet-SSH: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry
Maxime Beauchamp, Quentin Febvre, Hugo Georgenthum, and Ronan Fablet
Geosci. Model Dev., 16, 2119–2147, https://doi.org/10.5194/gmd-16-2119-2023,https://doi.org/10.5194/gmd-16-2119-2023, 2023
Short summary
Four-dimensional temperature, salinity and mixed-layer depth in the Gulf Stream, reconstructed from remote-sensing and in situ observations with neural networks
Etienne Pauthenet, Loïc Bachelot, Kevin Balem, Guillaume Maze, Anne-Marie Tréguier, Fabien Roquet, Ronan Fablet, and Pierre Tandeo
Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022,https://doi.org/10.5194/os-18-1221-2022, 2022
Short summary
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary