ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume X-4/W1-2022
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-495-2023
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-495-2023
14 Jan 2023
 | 14 Jan 2023

SEGMENTATION OF ELECTRICAL SUBSTATIONS USING DEEP CONVOLUTIONAL NEURAL NETWORK

M. Mesvari and R. Shah-Hosseini

Keywords: Segmentation, Encoder-Decoder Convolutional Neural Network, Electrical substations, High-resolution satellite images

Abstract. The location of electrical substations is one of the factors affecting the improvement of electrical energy distribution, as well as the management and control of this energy source. Less cost and manpower will be spent through automating the process of detection and segmentation of these features with the help of deep neural networks and the potential of existing high spatial resolution satellite images. In this study, a deep encoder-decoder neural network was used. This network is one of the most updated deep learning methods in image processing and segmentation. This network has been trained in three RGB bands with the help of high-resolution satellite images (∼1m) and eventually segmented the areas related to electrical substations with relatively high accuracy. As the results of this convolutional neural network, the IOU and Precision parameters were obtained, and their values were 88.2 and 93.7%, respectively, indicating the efficiency of the proposed deep learning method in the segmentation of existing satellite images.