SATELLITE STEREO BASED DIGITAL SURFACE MODEL GENERATION USING SEMI GLOBAL MATCHING IN OBJECT AND IMAGE SPACE
Keywords: Stereo, Semi-Global Matching, DSM, High resolution Satellite Images
Abstract. This paper presents methodology and evaluation of Digital Surface Models (DSM) generated from satellite stereo imagery using Semi Global Matching (SGM) applied in image space and georeferenced voxel space. SGM is a well known algorithm, used widely for DSM generation from airborne and satellite imagery. SGM is typically applied in the image space to compute disparity map corresponding to a stereo image pair. As a different approach, SGM can be applied directly to the georeferenced voxel space similar to the approach of volumetric multi-view reconstruction techniques. The matching in voxel space simplifies the DSM generation pipeline because the stereo rectification and triangulation steps are not required. For a comparison, the complete pipeline for generation of DSM from satellite pushbroom sensors is also presented. The results on the ISPRS satellite stereo benchmark using Worldview stereo imagery of 0.5m resolution shows that the SGM applied in image space produce slightly better results than its object space counterpart. Furthermore, a qualitative analysis of the results on Worldview-3 stereo and Pleiades tri-stereo images are presented.