|
16 Sep 2019
AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES WITH GOOGLE EARTH ENGINE
M. Schmitt, L. H. Hughes, C. Qiu, and X. X. Zhu
Viewed
Total article views: 3,076 (including HTML, PDF, and XML)
HTML |
PDF |
XML |
Total |
BibTeX |
EndNote |
1,564 |
1,459 |
53 |
3,076 |
47 |
44 |
- HTML: 1,564
- PDF: 1,459
- XML: 53
- Total: 3,076
- BibTeX: 47
- EndNote: 44
Views and downloads (calculated since 16 Sep 2019)
Cumulative views and downloads
(calculated since 16 Sep 2019)
Viewed (geographical distribution)
Total article views: 2,828 (including HTML, PDF, and XML)
Thereof 2,823 with geography defined
and 5 with unknown origin.
|
Total: |
0 |
HTML: |
0 |
PDF: |
0 |
XML: |
0 |
Cited
37 citations as recorded by crossref.
-
The Green Revolution from space: Mapping the historic dynamics of main rice types in one of the world's food bowls
J. Peña-Arancibia et al.
10.1016/j.rsase.2020.100460
-
Cloud Removal with SAR-Optical Data Fusion and Graph-Based Feature Aggregation Network
S. Chen et al.
10.3390/rs14143374
-
Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds
N. Almarines et al.
10.3390/rs16122167
-
Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation
S. Praticò et al.
10.3390/rs13040586
-
On the interchangeability of Landsat and MODIS data in the CMRSET actual evapotranspiration model – Comment on “Monitoring irrigation using Landsat observations and climate data over regional scales in the Murray-Darling Basin” by David Bretreger, In-Young Yeo, Greg Hancock and Garry Willgoose
J. Peña-Arancibia et al.
10.1016/j.jhydrol.2021.127044
-
Contributions to Satellite-Based Land Cover Classification, Vegetation Quantification and Grassland Monitoring in Central Asian Highlands Using Sentinel-2 and MODIS Data
H. Zandler et al.
10.3389/fenvs.2022.684589
-
Cloud Removal With SAR-Optical Data Fusion Using a Unified Spatial–Spectral Residual Network
Y. Wang et al.
10.1109/TGRS.2023.3339210
-
Multi-year mapping of cropping systems in regions with smallholder farms from Sentinel-2 images in Google Earth engine
H. Qi et al.
10.1080/15481603.2024.2309843
-
Land consumption in cities: A comparative study across the globe
J. Hu et al.
10.1016/j.cities.2021.103163
-
So2Sat POP - A Curated Benchmark Data Set for Population Estimation from Space on a Continental Scale
S. Doda et al.
10.1038/s41597-022-01780-x
-
Automatized Sentinel-2 mosaicking for large area forest mapping
T. Pitkänen et al.
10.1016/j.jag.2024.103659
-
CERMF-Net: A SAR-Optical Feature Fusion for Cloud Elimination From Sentinel-2 Imagery Using Residual Multiscale Dilated Network
J. Anandakrishnan et al.
10.1109/JSTARS.2024.3411032
-
HF-T2CR: High-Fidelity Thin and Thick Cloud Removal in Optical Satellite Images Through SAR Fusion
X. Li et al.
10.1109/TGRS.2024.3416128
-
Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas
C. Iranzo et al.
10.4995/raet.2022.15099
-
Semi-Supervised Urban Change Detection Using Multi-Modal Sentinel-1 SAR and Sentinel-2 MSI Data
S. Hafner et al.
10.3390/rs15215135
-
High-spatial-resolution surface soil moisture retrieval using the Deep Forest model in the cloud environment over the Tibetan Plateau
Z. Li et al.
10.1080/10095020.2024.2307931
-
Identifying Urban Wetlands through Remote Sensing Scene Classification Using Deep Learning: A Case Study of Shenzhen, China
R. Yang et al.
10.3390/ijgi11020131
-
Analysis of the Spatiotemporal Urban Expansion of the Rome Coastline through GEE and RF Algorithm, Using Landsat Imagery
F. Lodato et al.
10.3390/ijgi12040141
-
A Forest Fire Prediction Method for Lightning Stroke Based on Remote Sensing Data
Z. Zhang et al.
10.3390/f15040647
-
So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local Climate Zones [Software and Data Sets]
X. Zhu et al.
10.1109/MGRS.2020.2964708
-
Cloud-Guided Fusion With SAR-to-Optical Translation for Thick Cloud Removal
X. Xiang et al.
10.1109/TGRS.2024.3431556
-
Potential of Large-Scale Inland Water Body Mapping from Sentinel-1/2 Data on the Example of Bavaria’s Lakes and Rivers
M. Schmitt
10.1007/s41064-020-00111-2
-
A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks
C. Qiu et al.
10.1016/j.isprsjprs.2020.01.028
-
Urban sprawl characterization and its impact on peri-urban agriculture in Sidi Bel Abbes, Algeria, using multi-date landsat imagery
D. Mansour et al.
10.1007/s10708-023-10875-w
-
Dense NDVI Time Series by Fusion of Optical and SAR-Derived Data
T. Roßberg & M. Schmitt
10.1109/JSTARS.2024.3379838
-
Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam
G. Maskell et al.
10.1016/j.rse.2021.112709
-
Cloud removal for optical remote sensing imagery using the SPA-CycleGAN network
R. Jing et al.
10.1117/1.JRS.16.034520
-
GLAMOUR: GLobAl building MOrphology dataset for URban hydroclimate modelling
R. Li et al.
10.1038/s41597-024-03446-2
-
Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
Y. Li et al.
10.1016/j.rse.2020.112045
-
Multilevel Feature Fusion-Based CNN for Local Climate Zone Classification From Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset
C. Qiu et al.
10.1109/JSTARS.2020.2995711
-
Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion
A. Meraner et al.
10.1016/j.isprsjprs.2020.05.013
-
Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery
S. Peters et al.
10.3390/rs16101722
-
Agricultural Land Classification Using Vegetation Indices, PCA, and Google Earth Engine: Case Study of Söke/Aydın
M. İNALPULAT et al.
10.33202/comuagri.1295054
-
Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery
L. Zhou et al.
10.1080/10095020.2022.2030654
-
Unsupervised Deep Joint Segmentation of Multitemporal High-Resolution Images
S. Saha et al.
10.1109/TGRS.2020.2990640
-
DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
Y. Li et al.
10.1016/j.isprsjprs.2022.02.013
-
Fusing Multiseasonal Sentinel-2 Imagery for Urban Land Cover Classification With Multibranch Residual Convolutional Neural Networks
C. Qiu et al.
10.1109/LGRS.2019.2953497
Latest update: 21 Jan 2025