|
18 May 2022
MACHINE LEARNING-BASED ECONOMIC DEVELOPMENT MAPPING FROM MULTI-SOURCE OPEN GEOSPATIAL DATA
R. Cao, W. Tu, J. Cai, T. Zhao, J. Xiao, J. Cao, Q. Gao, and H. Su
Related authors
UNCOVERING SPATIAL SYNERGY OF THE MEGACITY REGION: A FLOW PERSPECTIVE
B. Fang, W. Tu, M. Li, J. Cao, W. Gao, Y. Yue, and Q. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 521–528, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-521-2022,https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-521-2022, 2022
A NEW HIERARCHICAL CLUSTERING APPROACH FOR SPARSE MOBILE PHONE TRAJECTORIES
W. Wang, Z. Luan, B. He, X. Li, D. Zhang, Z. Huang, and W. Tu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 697–701, https://doi.org/10.5194/isprs-archives-XLII-4-697-2018,https://doi.org/10.5194/isprs-archives-XLII-4-697-2018, 2018
REVEALING SPATIAL VARIATION AND CORRELATION OF URBAN TRAVELS FROM BIG TRAJECTORY DATA
X. Li, W. Tu, S. Shen, Y. Yue, N. Luo, and Q. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 53–57, https://doi.org/10.5194/isprs-archives-XLII-2-W7-53-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-53-2017, 2017