
|
14 Oct 2022
THE EFFECT OF CULTURE-SPECIFIC DIFFERENCES IN URBAN STREETSCAPES ON THE INFERENCE ACCURACY OF DEEP LEARNING MODELS
T. Inoue, R. Manabe, A. Murayama, and H. Koizumi
Related authors
A Data-driven Smart District Toward Net Zero Using Generative Design and Urban Digital Twins: A Use Case of Nihonbashi, Tokyo
Abdulrahman H. Alorabi, Jingyuan Shen, Jalisa M. Smith, Max Hawkins, Kamyar Fatemifar, Takahiro Yoshida, Akito Murayama, and Perry Pei-Ju Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W16-2025, 1–8, https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-1-2025,https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-1-2025, 2025
Enhancing Urban Heat Risk Resilience in Tokyo’s Nihonbashi through Urban Digital Twins of 4-Step Scenario Planning
Qinghao Zeng, Ryan T. Nation, Hina I. Ahmed, Hsu-Chieh Ma, Kaiyu Zhou, Jiaqi Gu, Takahiro Yoshida, Akito Murayama, and Perry Pei-Ju Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W16-2025, 135–142, https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-135-2025,https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-135-2025, 2025